An (m, n, 2)-balanced Latin rectangle is an m×n\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${m \times n}$$\end{document} array on symbols 0 and 1 such that each symbol occurs n times in each row and m times in each column, with each cell containing either two 0’s, two 1’s or both 0 and 1. We completely determine the structure of all critical sets of the full (m, n, 2)-balanced Latin rectangle (which contains 0 and 1 in each cell). If m, n≥2\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${n \geq 2}$$\end{document}, the minimum size for such a structure is shown to be (m-1)(n-1)+1\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${(m-1)(n-1)+1}$$\end{document}. Such critical sets in turn determine defining sets for (0, 1)-matrices.