Critical Sets of 2-Balanced Latin Rectangles

被引:0
|
作者
Nicholas Cavenagh
Vaipuna Raass
机构
[1] The University of Waikato,Department of Mathematics
来源
Annals of Combinatorics | 2016年 / 20卷
关键词
full design; critical set; (0, 1)-matrix; balanced Latin rectangle; Latin square; 05B15;
D O I
暂无
中图分类号
学科分类号
摘要
An (m, n, 2)-balanced Latin rectangle is an m×n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${m \times n}$$\end{document} array on symbols 0 and 1 such that each symbol occurs n times in each row and m times in each column, with each cell containing either two 0’s, two 1’s or both 0 and 1. We completely determine the structure of all critical sets of the full (m, n, 2)-balanced Latin rectangle (which contains 0 and 1 in each cell). If m, n≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${n \geq 2}$$\end{document}, the minimum size for such a structure is shown to be (m-1)(n-1)+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${(m-1)(n-1)+1}$$\end{document}. Such critical sets in turn determine defining sets for (0, 1)-matrices.
引用
收藏
页码:525 / 538
页数:13
相关论文
共 50 条
  • [21] SETS GENERATED BY RECTANGLES
    BING, RH
    BLEDSOE, WW
    MAULDIN, RD
    PACIFIC JOURNAL OF MATHEMATICS, 1974, 51 (01) : 27 - 36
  • [22] The Largest Critical Sets of Latin Squares
    Hermiston, Keith
    2019 53RD ANNUAL CONFERENCE ON INFORMATION SCIENCES AND SYSTEMS (CISS), 2019,
  • [23] CRITICAL SETS IN NETS AND LATIN SQUARES
    COOPER, JA
    MCDONOUGH, TP
    MAVRON, VC
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 1994, 41 (02) : 241 - 256
  • [24] Completing Latin squares: Critical sets
    Horak, P
    Aldred, REL
    Fleischner, H
    JOURNAL OF COMBINATORIAL DESIGNS, 2002, 10 (06) : 419 - 432
  • [25] Critical sets in products of latin squares
    Gower, RAH
    ARS COMBINATORIA, 2000, 55 : 293 - 317
  • [26] Critical sets for families of Latin squares
    Donovan, D
    UTILITAS MATHEMATICA, 1998, 53 : 3 - 16
  • [27] The Smallest Critical Sets of Latin Squares
    Hermiston, Keith
    2018 12TH INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING AND COMMUNICATION SYSTEMS (ICSPCS), 2018,
  • [28] ON COMPLETING LATIN RECTANGLES
    LINDNER, CC
    CANADIAN MATHEMATICAL BULLETIN, 1970, 13 (01): : 65 - +
  • [29] Optimal 2-d interleaving with Latin rectangles
    Xu, WQ
    Golomb, SW
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2005, 51 (03) : 1179 - 1182
  • [30] On the spectrum of critical sets in latin squares of order 2n
    Donovan, Diane
    LeFevre, James
    van Rees, G. H. John
    JOURNAL OF COMBINATORIAL DESIGNS, 2008, 16 (01) : 25 - 43