Entanglement types for two-qubit states with real amplitudes

被引:0
|
作者
Oscar Perdomo
Vicente Leyton-Ortega
Alejandro Perdomo-Ortiz
机构
[1] Zapata Computing Canada Inc.,Department of Computer Science
[2] University College London,Department of Mathematics
[3] Rigetti Computing,Computer Science and Engineering Division
[4] Central Connecticut State University,undefined
[5] Oak Ridge National Laboratory,undefined
来源
关键词
Quantum state preparation; Geometry of entanglement; Quantum entanglement;
D O I
暂无
中图分类号
学科分类号
摘要
We study the set of two-qubit pure states with real amplitudes and their geometrical representation in the three-dimensional sphere. In this representation, we show that the maximally entangled states—those locally equivalent to the Bell states—form two disjoint circles perpendicular to each other. We also show that taking the natural Riemannian metric on the sphere, the set of states connected by local gates are equidistant to this pair of circles. Moreover, the unentangled or so-called product states are π/4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi /4$$\end{document} units away to the maximally entangled states. This is, the unentangled states are the farthest away to the maximally entangled states. In this way, if we define two states to be equivalent if they are connected by local gates, we have that there are as many equivalent classes as points in the interval [0,π/4]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[0,\pi /4]$$\end{document} with the point 0 corresponding to the maximally entangled states. The point π/4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi /4$$\end{document} corresponds to the unentangled states which geometrically are described by a torus. Finally, for every 0<d<π/4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0< d < \pi /4$$\end{document} the point d corresponds to a disjoint pair of torus. Finally, we also show how this geometrical interpretation allows to clearly see that any pair of two-qubit states with real amplitudes can be connected with a circuit that only has single-qubit gates and one controlled-Z gate.
引用
收藏
相关论文
共 50 条
  • [41] Entanglement capacity of two-qubit unitary operator for rank two mixed states
    DI YaoMin & LIU Li Department of Physics
    Science China(Physics,Mechanics & Astronomy), 2007, (06) : 691 - 697
  • [42] Entanglement capacity of two-qubit unitary operator for rank two mixed states
    Di YaoMin
    Liu Li
    SCIENCE IN CHINA SERIES G-PHYSICS MECHANICS & ASTRONOMY, 2007, 50 (06): : 691 - 697
  • [43] Entanglement capacity of two-qubit unitary operator for rank two mixed states
    YaoMin Di
    Li Liu
    Science in China Series G: Physics, Mechanics and Astronomy, 2007, 50 : 691 - 697
  • [44] Universal detection of entanglement in two-qubit states using only two copies
    Goswami, Suchetana
    Chakraborty, Sagnik
    Ghosh, Sibasish
    Majumdar, A. S.
    PHYSICAL REVIEW A, 2019, 99 (01)
  • [45] Direct measurement of nonlocal entanglement of two-qubit spin quantum states
    Cheng, Liu-Yong
    Yang, Guo-Hui
    Guo, Qi
    Wang, Hong-Fu
    Zhang, Shou
    SCIENTIFIC REPORTS, 2016, 6
  • [46] Experimental measurement of a nonlinear entanglement witness by hyperentangling two-qubit states
    Travnicek, Vojtech
    Bartkiewicz, Karol
    Cernoch, Antonin
    Lemr, Karel
    PHYSICAL REVIEW A, 2018, 98 (03)
  • [47] Relative entropy of entanglement of two-qubit Ux-invariant states
    Wang, Zhen
    Wang, Zhi-Xi
    INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2015, 13 (08)
  • [48] Entanglement and separability of two-qubit states on Minkowski space with compact support
    Braga, Helena
    Souza, Simone
    Mizrahi, Salomon S.
    PHYSICAL REVIEW A, 2011, 84 (05):
  • [49] Direct measurement of nonlocal entanglement of two-qubit spin quantum states
    Liu-Yong Cheng
    Guo-Hui Yang
    Qi Guo
    Hong-Fu Wang
    Shou Zhang
    Scientific Reports, 6
  • [50] Bell inequalities versus entanglement and mixedness for a class of two-qubit states
    Derkacz, L
    Jakóbczyk, L
    PHYSICS LETTERS A, 2004, 328 (01) : 26 - 35