Entanglement types for two-qubit states with real amplitudes

被引:0
|
作者
Oscar Perdomo
Vicente Leyton-Ortega
Alejandro Perdomo-Ortiz
机构
[1] Zapata Computing Canada Inc.,Department of Computer Science
[2] University College London,Department of Mathematics
[3] Rigetti Computing,Computer Science and Engineering Division
[4] Central Connecticut State University,undefined
[5] Oak Ridge National Laboratory,undefined
来源
关键词
Quantum state preparation; Geometry of entanglement; Quantum entanglement;
D O I
暂无
中图分类号
学科分类号
摘要
We study the set of two-qubit pure states with real amplitudes and their geometrical representation in the three-dimensional sphere. In this representation, we show that the maximally entangled states—those locally equivalent to the Bell states—form two disjoint circles perpendicular to each other. We also show that taking the natural Riemannian metric on the sphere, the set of states connected by local gates are equidistant to this pair of circles. Moreover, the unentangled or so-called product states are π/4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi /4$$\end{document} units away to the maximally entangled states. This is, the unentangled states are the farthest away to the maximally entangled states. In this way, if we define two states to be equivalent if they are connected by local gates, we have that there are as many equivalent classes as points in the interval [0,π/4]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[0,\pi /4]$$\end{document} with the point 0 corresponding to the maximally entangled states. The point π/4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi /4$$\end{document} corresponds to the unentangled states which geometrically are described by a torus. Finally, for every 0<d<π/4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0< d < \pi /4$$\end{document} the point d corresponds to a disjoint pair of torus. Finally, we also show how this geometrical interpretation allows to clearly see that any pair of two-qubit states with real amplitudes can be connected with a circuit that only has single-qubit gates and one controlled-Z gate.
引用
收藏
相关论文
共 50 条
  • [31] Relationship Between Entanglement and Coherence in Some Two-Qubit States
    Zhao, Fa
    Wang, Dong
    Ye, Liu
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2022, 61 (01)
  • [33] Entanglement Dynamics of Two-Qubit System in Different Types of Noisy Channels
    Shan Chuan-Jia
    Liu Ji-Bing
    Cheng Wei-Wen
    Liu Tang-Kun
    Huang Yan-Xia
    Li Hong
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2009, 51 (06) : 1013 - 1016
  • [34] Maximal Entanglement of Two-Qubit States Constructed by Linearly Independent Coherent States
    G. Najarbashi
    Y. Maleki
    International Journal of Theoretical Physics, 2011, 50 : 2601 - 2608
  • [35] Two-qubit entanglement in an antiferromagnetic environment
    Yuan, XZ
    Zhu, KD
    Wu, ZJ
    EUROPEAN PHYSICAL JOURNAL D, 2005, 33 (01): : 129 - 132
  • [36] Entanglement capability of two-qubit operations
    Kraus, B
    Dür, W
    Vidal, G
    Cirac, JI
    Lewenstein, M
    Linden, N
    Popescu, S
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2001, 56 (1-2): : 91 - 99
  • [37] Optimizing Entanglement in Two-Qubit Systems
    Luna-Hernandez, Salvio
    Quintana, Claudia
    Rosas-Ortiz, Oscar
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2025,
  • [38] Maximal Entanglement of Two-Qubit States Constructed by Linearly Independent Coherent States
    Najarbashi, G.
    Maleki, Y.
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2011, 50 (08) : 2601 - 2608
  • [39] Two-qubit entanglement in an antiferromagnetic environment
    X.-Z. Yuan
    K.-D. Zhu
    Z.-J. Wu
    The European Physical Journal D - Atomic, Molecular, Optical and Plasma Physics, 2005, 33 : 129 - 132
  • [40] Coherence and entanglement in a two-qubit system
    Orszag, Miguel
    Hernandez, Maritza
    ADVANCES IN OPTICS AND PHOTONICS, 2010, 2 (02): : 229 - 286