Entanglement types for two-qubit states with real amplitudes

被引:0
|
作者
Oscar Perdomo
Vicente Leyton-Ortega
Alejandro Perdomo-Ortiz
机构
[1] Zapata Computing Canada Inc.,Department of Computer Science
[2] University College London,Department of Mathematics
[3] Rigetti Computing,Computer Science and Engineering Division
[4] Central Connecticut State University,undefined
[5] Oak Ridge National Laboratory,undefined
来源
关键词
Quantum state preparation; Geometry of entanglement; Quantum entanglement;
D O I
暂无
中图分类号
学科分类号
摘要
We study the set of two-qubit pure states with real amplitudes and their geometrical representation in the three-dimensional sphere. In this representation, we show that the maximally entangled states—those locally equivalent to the Bell states—form two disjoint circles perpendicular to each other. We also show that taking the natural Riemannian metric on the sphere, the set of states connected by local gates are equidistant to this pair of circles. Moreover, the unentangled or so-called product states are π/4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi /4$$\end{document} units away to the maximally entangled states. This is, the unentangled states are the farthest away to the maximally entangled states. In this way, if we define two states to be equivalent if they are connected by local gates, we have that there are as many equivalent classes as points in the interval [0,π/4]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[0,\pi /4]$$\end{document} with the point 0 corresponding to the maximally entangled states. The point π/4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi /4$$\end{document} corresponds to the unentangled states which geometrically are described by a torus. Finally, for every 0<d<π/4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0< d < \pi /4$$\end{document} the point d corresponds to a disjoint pair of torus. Finally, we also show how this geometrical interpretation allows to clearly see that any pair of two-qubit states with real amplitudes can be connected with a circuit that only has single-qubit gates and one controlled-Z gate.
引用
收藏
相关论文
共 50 条
  • [21] Geometry and Entanglement of Two-Qubit States in the Quantum Probabilistic Representation
    Alberto Lopez-Saldivar, Julio
    Castanos, Octavio
    Nahmad-Achar, Eduardo
    Lopez-Pena, Ramon
    Man'ko, Margarita A.
    Man'ko, Vladimir I.
    ENTROPY, 2018, 20 (09)
  • [22] Relationship Between Entanglement and Coherence in Some Two-Qubit States
    Fa Zhao
    Dong Wang
    Liu Ye
    International Journal of Theoretical Physics, 2022, 61
  • [23] Entanglement witness measurement for two-qubit states by optical interference
    Wang, Zhi-Wei
    Li, Jian
    Huang, Yun-Feng
    Zhang, Yong-Sheng
    Ren, Xi-Feng
    Zhang, Pei
    Guo, Guang-Can
    EPL, 2008, 82 (06)
  • [24] Two-qubit mixed states and the entanglement-entropy frontier
    Wei, TC
    Nemoto, K
    Goldbart, PM
    Kwiat, PG
    Munro, WJ
    Verstraete, F
    QUANTUM COMMUNICATION, MEASUREMENT AND COMPUTING, PROCEEDINGS, 2003, : 37 - 40
  • [25] Transformation relation between coherence and entanglement for two-qubit states
    Zhou, Qing-Yun
    Fan, Xiao-Gang
    Zhao, Fa
    Wang, Dong
    Ye, Liu
    CHINESE PHYSICS B, 2023, 32 (01)
  • [26] Transformation relation between coherence and entanglement for two-qubit states
    周晴云
    范小刚
    赵发
    王栋
    叶柳
    Chinese Physics B, 2023, (01) : 209 - 213
  • [27] Entanglement Evolution of Two-Qubit States in the Presence of Local Decoherence
    Song, Wei
    Li, Da-Chuang
    Cao, Zhuo-Liang
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2011, 50 (03) : 833 - 837
  • [28] Entanglement Evolution of Two-Qubit States in the Presence of Local Decoherence
    Wei Song
    Da-Chuang Li
    Zhuo-Liang Cao
    International Journal of Theoretical Physics, 2011, 50 : 833 - 837
  • [29] Effects of atmospheric turbulence on the entanglement of spatial two-qubit states
    Jha, Anand K.
    Tyler, Glenn A.
    Boyd, Robert W.
    PHYSICAL REVIEW A, 2010, 81 (05):
  • [30] Relative entropy of entanglement of a kind of two-qubit entangled states
    Chen, XY
    Meng, LM
    Jiang, LZ
    Li, XJ
    CHINESE PHYSICS LETTERS, 2005, 22 (11) : 2755 - 2758