Entanglement types for two-qubit states with real amplitudes

被引:0
|
作者
Oscar Perdomo
Vicente Leyton-Ortega
Alejandro Perdomo-Ortiz
机构
[1] Zapata Computing Canada Inc.,Department of Computer Science
[2] University College London,Department of Mathematics
[3] Rigetti Computing,Computer Science and Engineering Division
[4] Central Connecticut State University,undefined
[5] Oak Ridge National Laboratory,undefined
来源
关键词
Quantum state preparation; Geometry of entanglement; Quantum entanglement;
D O I
暂无
中图分类号
学科分类号
摘要
We study the set of two-qubit pure states with real amplitudes and their geometrical representation in the three-dimensional sphere. In this representation, we show that the maximally entangled states—those locally equivalent to the Bell states—form two disjoint circles perpendicular to each other. We also show that taking the natural Riemannian metric on the sphere, the set of states connected by local gates are equidistant to this pair of circles. Moreover, the unentangled or so-called product states are π/4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi /4$$\end{document} units away to the maximally entangled states. This is, the unentangled states are the farthest away to the maximally entangled states. In this way, if we define two states to be equivalent if they are connected by local gates, we have that there are as many equivalent classes as points in the interval [0,π/4]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[0,\pi /4]$$\end{document} with the point 0 corresponding to the maximally entangled states. The point π/4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi /4$$\end{document} corresponds to the unentangled states which geometrically are described by a torus. Finally, for every 0<d<π/4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0< d < \pi /4$$\end{document} the point d corresponds to a disjoint pair of torus. Finally, we also show how this geometrical interpretation allows to clearly see that any pair of two-qubit states with real amplitudes can be connected with a circuit that only has single-qubit gates and one controlled-Z gate.
引用
收藏
相关论文
共 50 条
  • [1] Entanglement types for two-qubit states with real amplitudes
    Perdomo, Oscar
    Leyton-Ortega, Vicente
    Perdomo-Ortiz, Alejandro
    QUANTUM INFORMATION PROCESSING, 2021, 20 (03)
  • [2] ENTANGLEMENT OF TWO-QUBIT NONORTHOGONAL STATES
    Berrada, K.
    Chafik, A.
    Eleuch, H.
    Hassouni, Y.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2009, 23 (08): : 2021 - 2027
  • [3] Quantifying entanglement of two-qubit Werner states
    Artur Czerwinski
    CommunicationsinTheoreticalPhysics, 2021, 73 (08) : 77 - 83
  • [4] Quantifying entanglement of two-qubit Werner states
    Czerwinski, Artur
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2021, 73 (08)
  • [5] Entanglement optimizing mixtures of two-qubit states
    Shuddhodan, K. V.
    Ramkarthik, M. S.
    Lakshminarayan, A.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2011, 44 (34)
  • [6] Optimal estimation of entanglement and discord in two-qubit states
    Virzi, Salvatore
    Rebufello, Enrico
    Avella, Alessio
    Piacentini, Fabrizio
    Gramegna, Marco
    Berchera, Ivano Ruo
    Degiovanni, Ivo Pietro
    Genovese, Marco
    SCIENTIFIC REPORTS, 2019, 9 (1)
  • [7] Entanglement and entropy engineering of atomic two-qubit states
    Clark, SG
    Parkins, AS
    PHYSICAL REVIEW LETTERS, 2003, 90 (04)
  • [8] Conditions for entanglement purification with general two-qubit states
    Torres, Juan Mauricio
    Bernad, Jozsef Zsolt
    PHYSICAL REVIEW A, 2016, 94 (05)
  • [9] Entanglement universality of two-qubit X-states
    Mendonca, Paulo E. M. F.
    Marchiolli, Marcelo A.
    Galetti, Diogenes
    ANNALS OF PHYSICS, 2014, 351 : 79 - 103
  • [10] Entanglement of General Two-Qubit States in a Realistic Framework
    Abdel-Khalek, Sayed
    Berrada, Kamal
    Khalil, Eied M.
    Almalki, Fadhel
    SYMMETRY-BASEL, 2021, 13 (03): : 1 - 9