Quantum state preparation;
Geometry of entanglement;
Quantum entanglement;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
We study the set of two-qubit pure states with real amplitudes and their geometrical representation in the three-dimensional sphere. In this representation, we show that the maximally entangled states—those locally equivalent to the Bell states—form two disjoint circles perpendicular to each other. We also show that taking the natural Riemannian metric on the sphere, the set of states connected by local gates are equidistant to this pair of circles. Moreover, the unentangled or so-called product states are π/4\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\pi /4$$\end{document} units away to the maximally entangled states. This is, the unentangled states are the farthest away to the maximally entangled states. In this way, if we define two states to be equivalent if they are connected by local gates, we have that there are as many equivalent classes as points in the interval [0,π/4]\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$[0,\pi /4]$$\end{document} with the point 0 corresponding to the maximally entangled states. The point π/4\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\pi /4$$\end{document} corresponds to the unentangled states which geometrically are described by a torus. Finally, for every 0<d<π/4\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$0< d < \pi /4$$\end{document} the point d corresponds to a disjoint pair of torus. Finally, we also show how this geometrical interpretation allows to clearly see that any pair of two-qubit states with real amplitudes can be connected with a circuit that only has single-qubit gates and one controlled-Z gate.
机构:
Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus UniversityInstitute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University
机构:
Imam Mohammad Ibn Saud Islamic Univ IMSIU, Coll Sci, Phys Dept, Riyadh 13318, Saudi Arabia
Abdus Salam Int Ctr Theoret Phys, Str Costiera 11, I-34151 Miramare Trieste, ItalyTaif Univ, Coll Sci, Dept Math & Stat, POB 11099, At Taif 21944, Saudi Arabia
Berrada, Kamal
Khalil, Eied M.
论文数: 0引用数: 0
h-index: 0
机构:
Taif Univ, Coll Sci, Dept Math & Stat, POB 11099, At Taif 21944, Saudi ArabiaTaif Univ, Coll Sci, Dept Math & Stat, POB 11099, At Taif 21944, Saudi Arabia
Khalil, Eied M.
Almalki, Fadhel
论文数: 0引用数: 0
h-index: 0
机构:
Taif Univ, Coll Sci, Dept Math & Stat, POB 11099, At Taif 21944, Saudi ArabiaTaif Univ, Coll Sci, Dept Math & Stat, POB 11099, At Taif 21944, Saudi Arabia