We study positive solutions u of the Yamabe equation \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${c_{m} \Delta u-s\left( x\right) u+k\left( x\right) u^{\frac{m+2}{m-2}}=0}$$\end{document}, when k(x) > 0, on manifolds supporting a Sobolev inequality. In particular we get uniform decay estimates at infinity for u which depend on the behaviour at infinity of k, s and the LΓ-norm of u, for some \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\Gamma\geq\tfrac{2m}{m-2}}$$\end{document}. The required integral control, in turn, is implied by further geometric conditions. Finally we give an application to conformal immersions into the sphere.
机构:
North China Univ Water Resources & Elect Power, Sch Math & Stat, Zhengzhou 450011, Henan, Peoples R ChinaNorth China Univ Water Resources & Elect Power, Sch Math & Stat, Zhengzhou 450011, Henan, Peoples R China
Zhang, Y.
Li, P.
论文数: 0引用数: 0
h-index: 0
机构:
North China Univ Water Resources & Elect Power, Sch Math & Stat, Zhengzhou 450011, Henan, Peoples R ChinaNorth China Univ Water Resources & Elect Power, Sch Math & Stat, Zhengzhou 450011, Henan, Peoples R China
机构:
Univ Buenos Aires, Dept Matemat, Ciudad Univ,Pabellon 1,C1428EGA, Buenos Aires, DF, ArgentinaUniv Buenos Aires, Dept Matemat, Ciudad Univ,Pabellon 1,C1428EGA, Buenos Aires, DF, Argentina
Rey, Carolina A.
Ruiz, Juan Miguel
论文数: 0引用数: 0
h-index: 0
机构:
ENES UNAM, Leon 37684, Gto, MexicoUniv Buenos Aires, Dept Matemat, Ciudad Univ,Pabellon 1,C1428EGA, Buenos Aires, DF, Argentina
机构:
Univ Roma La Sapienza, Dipartimento Matemat G Castelnuovo, I-00185 Rome, ItalyUniv Roma La Sapienza, Dipartimento Matemat G Castelnuovo, I-00185 Rome, Italy