Uniform decay estimates for solutions of the Yamabe equation

被引:0
|
作者
Giona Veronelli
机构
[1] Università degli Studi di Milano,Dipartimento di Matematica
来源
Geometriae Dedicata | 2011年 / 155卷
关键词
Nonlinear elliptic partial differential equations; Yamabe problem; 53C21; 35J60;
D O I
暂无
中图分类号
学科分类号
摘要
We study positive solutions u of the Yamabe equation \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${c_{m} \Delta u-s\left( x\right) u+k\left( x\right) u^{\frac{m+2}{m-2}}=0}$$\end{document}, when k(x) > 0, on manifolds supporting a Sobolev inequality. In particular we get uniform decay estimates at infinity for u which depend on the behaviour at infinity of k, s and the LΓ-norm of u, for some \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Gamma\geq\tfrac{2m}{m-2}}$$\end{document}. The required integral control, in turn, is implied by further geometric conditions. Finally we give an application to conformal immersions into the sphere.
引用
收藏
页码:1 / 20
页数:19
相关论文
共 50 条