We study positive solutions u of the Yamabe equation \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${c_{m} \Delta u-s\left( x\right) u+k\left( x\right) u^{\frac{m+2}{m-2}}=0}$$\end{document}, when k(x) > 0, on manifolds supporting a Sobolev inequality. In particular we get uniform decay estimates at infinity for u which depend on the behaviour at infinity of k, s and the LΓ-norm of u, for some \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\Gamma\geq\tfrac{2m}{m-2}}$$\end{document}. The required integral control, in turn, is implied by further geometric conditions. Finally we give an application to conformal immersions into the sphere.
机构:
Hanyang Univ, Coll Nat Sci, Dept Math, 222 Wangsimni Ro, Seoul 04763, South KoreaHanyang Univ, Coll Nat Sci, Dept Math, 222 Wangsimni Ro, Seoul 04763, South Korea
Kim, Seunghyeok
Pistoia, Angela
论文数: 0引用数: 0
h-index: 0
机构:
Sapienza Univ Roma, Dipartimento Sci Base & Applicate Ingn, Via Antonio Scarpa 16, I-00161 Rome, ItalyHanyang Univ, Coll Nat Sci, Dept Math, 222 Wangsimni Ro, Seoul 04763, South Korea
机构:
Univ Notre Dame, Dept Math, Notre Dame, IN 46556 USAUniv Notre Dame, Dept Math, Notre Dame, IN 46556 USA
Han, Qing
Li, Yichao
论文数: 0引用数: 0
h-index: 0
机构:
Univ Notre Dame, Dept Math, Notre Dame, IN 46556 USA
Peking Univ, Sch Math Sci, Beijing 100871, Peoples R ChinaUniv Notre Dame, Dept Math, Notre Dame, IN 46556 USA