Multipeak Solutions for the Yamabe Equation

被引:0
|
作者
Carolina A. Rey
Juan Miguel Ruiz
机构
[1] Universidad de Buenos Aires,Departamento de Matemática
[2] Ciudad Universitaria,undefined
[3] ENES UNAM,undefined
来源
关键词
Yamabe problem; Elliptic PDE on manifolds; Scalar curvature; Finite dimensional reduction; 35J60; 58J05; 35B33; 35B09;
D O I
暂无
中图分类号
学科分类号
摘要
Let (M, g) be a closed Riemannian manifold of dimension n≥3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\ge 3$$\end{document} and x0∈M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x_0 \in M$$\end{document} be an isolated local minimum of the scalar curvature sg\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s_\mathrm{{g}}$$\end{document} of g. For any positive integer k we prove that for ϵ>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon >0$$\end{document} small enough the subcritical Yamabe equation -ϵ2Δu+(1+cNϵ2sg)u=uq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-\epsilon ^2 \Delta u +(1+ c_{N} \ \epsilon ^2 s_\mathrm{{g}}) u = u^\mathrm{{q}}$$\end{document} has a positive k-peaks solution which concentrate around x0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x_0$$\end{document}, assuming that a constant β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta $$\end{document} is non-zero. In the equation cN=N-24(N-1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c_N = \frac{N-2}{4(N-1)}$$\end{document} for an integer N>n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N>n$$\end{document} and q=N+2N-2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q= \frac{N+2}{N-2}$$\end{document}. The constant β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta $$\end{document} depends on n and N, and can be easily computed numerically, being negative in all cases considered. This provides solutions to the Yamabe equation on Riemannian products (M×X,g+ϵ2h)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(M\times X , g+ \epsilon ^2 h )$$\end{document}, where (X, h) is a Riemannian manifold with constant positive scalar curvature. We also prove that solutions with small energy only have one local maximum.
引用
收藏
页码:1180 / 1222
页数:42
相关论文
共 50 条