Multipeak Solutions for the Yamabe Equation

被引:0
|
作者
Carolina A. Rey
Juan Miguel Ruiz
机构
[1] Universidad de Buenos Aires,Departamento de Matemática
[2] Ciudad Universitaria,undefined
[3] ENES UNAM,undefined
来源
关键词
Yamabe problem; Elliptic PDE on manifolds; Scalar curvature; Finite dimensional reduction; 35J60; 58J05; 35B33; 35B09;
D O I
暂无
中图分类号
学科分类号
摘要
Let (M, g) be a closed Riemannian manifold of dimension n≥3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\ge 3$$\end{document} and x0∈M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x_0 \in M$$\end{document} be an isolated local minimum of the scalar curvature sg\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s_\mathrm{{g}}$$\end{document} of g. For any positive integer k we prove that for ϵ>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon >0$$\end{document} small enough the subcritical Yamabe equation -ϵ2Δu+(1+cNϵ2sg)u=uq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-\epsilon ^2 \Delta u +(1+ c_{N} \ \epsilon ^2 s_\mathrm{{g}}) u = u^\mathrm{{q}}$$\end{document} has a positive k-peaks solution which concentrate around x0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x_0$$\end{document}, assuming that a constant β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta $$\end{document} is non-zero. In the equation cN=N-24(N-1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c_N = \frac{N-2}{4(N-1)}$$\end{document} for an integer N>n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N>n$$\end{document} and q=N+2N-2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q= \frac{N+2}{N-2}$$\end{document}. The constant β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta $$\end{document} depends on n and N, and can be easily computed numerically, being negative in all cases considered. This provides solutions to the Yamabe equation on Riemannian products (M×X,g+ϵ2h)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(M\times X , g+ \epsilon ^2 h )$$\end{document}, where (X, h) is a Riemannian manifold with constant positive scalar curvature. We also prove that solutions with small energy only have one local maximum.
引用
收藏
页码:1180 / 1222
页数:42
相关论文
共 50 条
  • [42] On positive multipeak solutions of a nonlinear elliptic problem
    Noussair, ES
    Yan, S
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2000, 62 : 213 - 227
  • [43] Multipeak solutions for a semilinear Neumann problem
    Gui, CF
    DUKE MATHEMATICAL JOURNAL, 1996, 84 (03) : 739 - 769
  • [44] Multiple solutions to the Yamabe problem
    Yu. V. Egorov
    Ya. Sh. Il’yasov
    Doklady Mathematics, 2006, 74
  • [45] On conformal solutions of the Yamabe flow
    Barbosa, Ezequiel
    Ribeiro, Ernani, Jr.
    ARCHIV DER MATHEMATIK, 2013, 101 (01) : 79 - 89
  • [46] On conformal solutions of the Yamabe flow
    Ezequiel Barbosa
    Ernani Ribeiro
    Archiv der Mathematik, 2013, 101 : 79 - 89
  • [47] Complex group actions on the sphere and sign changing solutions for the CR-Yamabe equation
    Maalaoui, Ali
    Martino, Vittorio
    Tralli, Giulio
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 431 (01) : 126 - 135
  • [48] Multiple solutions to the Yamabe problem
    Egorov, Yu. V.
    Il'yasov, Ya. Sh.
    DOKLADY MATHEMATICS, 2006, 74 (01) : 484 - 486
  • [49] Compactness of solutions to the Yamabe problem
    Li, YY
    Zhang, L
    COMPTES RENDUS MATHEMATIQUE, 2004, 338 (09) : 693 - 695
  • [50] Optimal pinwheel partitions for the Yamabe equation
    Clapp, Monica
    Faya, Jorge
    Saldana, Alberto
    NONLINEARITY, 2024, 37 (10)