Multiple solutions to the Yamabe problem

被引:1
|
作者
Egorov, Yu. V. [1 ]
Il'yasov, Ya. Sh.
机构
[1] Univ Toulouse 3, F-31062 Toulouse, France
[2] Bashkir State Univ, Ufa 450074, Russia
基金
俄罗斯基础研究基金会;
关键词
D O I
10.1134/S1064562406040041
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study the generalized Yamabe problem for a Riemannian manifold with smooth boundary, which is concerned with the existence of a conformal metric in which the manifold has given scalar curvature and the boundary has given mean curvature. We also generalize the notion of a critical Palais-Smale level and find a new conformally invariant necessary and sufficient condition for the existence of multiple solutions to the problem. © Pleiades Publishing, Inc., 2006.
引用
收藏
页码:484 / 486
页数:3
相关论文
共 50 条
  • [1] Multiple solutions to the Yamabe problem
    Yu. V. Egorov
    Ya. Sh. Il’yasov
    Doklady Mathematics, 2006, 74
  • [2] Compactness of solutions to the Yamabe problem
    Li, YY
    Zhang, L
    COMPTES RENDUS MATHEMATIQUE, 2004, 338 (09) : 693 - 695
  • [3] A NOTE ON THE UNIQUENESS OF SOLUTIONS FOR THE YAMABE PROBLEM
    de Lima, L. L.
    Piccione, P.
    Zedda, M.
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2012, 140 (12) : 4351 - 4357
  • [4] Multiplicity of nodal solutions to the Yamabe problem
    Clapp, Monica
    Carlos Fernandez, Juan
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2017, 56 (05)
  • [5] Multiplicity of nodal solutions to the Yamabe problem
    Mónica Clapp
    Juan Carlos Fernández
    Calculus of Variations and Partial Differential Equations, 2017, 56
  • [6] Uniqueness of solutions of the Yamabe problem on manifolds with boundary
    Cardenas, Elkin
    Sierra, Willy
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2019, 187 : 125 - 133
  • [7] On bifurcation of solutions of the Yamabe problem in product manifolds
    de Lima, L. L.
    Piccione, P.
    Zedda, M.
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2012, 29 (02): : 261 - 277
  • [8] Compactness of solutions to the Yamabe problem. II
    Li, YY
    Zhang, L
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2005, 24 (02) : 185 - 237
  • [9] Compactness of solutions to the Yamabe problem. II
    YanYan Li
    Lei Zhang
    Calculus of Variations and Partial Differential Equations, 2005, 24 : 185 - 237
  • [10] Nondegeneracy of Nodal Solutions to the Critical Yamabe Problem
    Monica Musso
    Juncheng Wei
    Communications in Mathematical Physics, 2015, 340 : 1049 - 1107