Multipeak Solutions for the Yamabe Equation

被引:0
|
作者
Carolina A. Rey
Juan Miguel Ruiz
机构
[1] Universidad de Buenos Aires,Departamento de Matemática
[2] Ciudad Universitaria,undefined
[3] ENES UNAM,undefined
来源
关键词
Yamabe problem; Elliptic PDE on manifolds; Scalar curvature; Finite dimensional reduction; 35J60; 58J05; 35B33; 35B09;
D O I
暂无
中图分类号
学科分类号
摘要
Let (M, g) be a closed Riemannian manifold of dimension n≥3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\ge 3$$\end{document} and x0∈M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x_0 \in M$$\end{document} be an isolated local minimum of the scalar curvature sg\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s_\mathrm{{g}}$$\end{document} of g. For any positive integer k we prove that for ϵ>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon >0$$\end{document} small enough the subcritical Yamabe equation -ϵ2Δu+(1+cNϵ2sg)u=uq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-\epsilon ^2 \Delta u +(1+ c_{N} \ \epsilon ^2 s_\mathrm{{g}}) u = u^\mathrm{{q}}$$\end{document} has a positive k-peaks solution which concentrate around x0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x_0$$\end{document}, assuming that a constant β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta $$\end{document} is non-zero. In the equation cN=N-24(N-1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c_N = \frac{N-2}{4(N-1)}$$\end{document} for an integer N>n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N>n$$\end{document} and q=N+2N-2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q= \frac{N+2}{N-2}$$\end{document}. The constant β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta $$\end{document} depends on n and N, and can be easily computed numerically, being negative in all cases considered. This provides solutions to the Yamabe equation on Riemannian products (M×X,g+ϵ2h)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(M\times X , g+ \epsilon ^2 h )$$\end{document}, where (X, h) is a Riemannian manifold with constant positive scalar curvature. We also prove that solutions with small energy only have one local maximum.
引用
收藏
页码:1180 / 1222
页数:42
相关论文
共 50 条
  • [11] Blowing-up solutions for the Yamabe equation
    Esposito, Pierpaolo
    Pistoia, Angela
    PORTUGALIAE MATHEMATICA, 2014, 71 (3-4) : 249 - 276
  • [12] Uniform decay estimates for solutions of the Yamabe equation
    Veronelli, Giona
    GEOMETRIAE DEDICATA, 2011, 155 (01) : 1 - 20
  • [13] Low energy nodal solutions to the Yamabe equation
    Carlos Fernandez, Juan
    Petean, Jimmy
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2020, 268 (11) : 6576 - 6597
  • [14] Large energy entire solutions for the Yamabe equation
    del Pino, Manuel
    Musso, Monica
    Pacard, Frank
    Pistoia, Angela
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2011, 251 (09) : 2568 - 2597
  • [15] Isoparametric functions and nodal solutions of the Yamabe equation
    Henry, G.
    ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2019, 56 (02) : 203 - 219
  • [16] Square-integrability of solutions of the Yamabe equation
    Ammann, Bernd
    Dahl, Mattias
    Humbert, Emmanuel
    COMMUNICATIONS IN ANALYSIS AND GEOMETRY, 2013, 21 (05) : 891 - 916
  • [17] Multiplicity of solutions to the Yamabe equation on warped products
    Miguel Ruiz, Juan
    JOURNAL OF GEOMETRY AND PHYSICS, 2019, 138 : 44 - 54
  • [18] Solutions of the Yamabe Equation by Lyapunov–Schmidt Reduction
    Jorge Dávila
    Isidro H. Munive
    The Journal of Geometric Analysis, 2021, 31 : 8080 - 8104
  • [19] Asymptotic Expansions of Solutions of the Yamabe Equation and theσk-Yamabe Equation near Isolated Singular Points
    Han, Qing
    Li, Xiaoxiao
    Li, Yichao
    COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2021, 74 (09) : 1915 - 1970
  • [20] MULTIPLICITY OF 2-NODAL SOLUTIONS OF THE YAMABE EQUATION
    Ortiz, Jorge davila
    Gonzalez, Hector barrantes
    Lima, Isidro h. munive
    TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2024, 64 (01) : 361 - 379