On Quantizable Odd Lie Bialgebras

被引:0
|
作者
Anton Khoroshkin
Sergei Merkulov
Thomas Willwacher
机构
[1] National Research University Higher School of Economics,International Laboratory of Representation Theory and Mathematical Physics
[2] ITEP,Mathematics Research Unit
[3] Luxembourg University,Institute of Mathematics
[4] University of Zurich,undefined
来源
关键词
Lie bialgebras; deformation quantization; Poisson structures; properads and props.; 17B62; 18D50; 55P48; 53D55;
D O I
暂无
中图分类号
学科分类号
摘要
Motivated by the obstruction to the deformation quantization of Poisson structures in infinite dimensions, we introduce the notion of a quantizable odd Lie bialgebra. The main result of the paper is a construction of the highly non-trivial minimal resolution of the properad governing such Lie bialgebras, and its link with the theory of so-called quantizable Poisson structures.
引用
收藏
页码:1199 / 1215
页数:16
相关论文
共 50 条
  • [41] Quantization of Lie bialgebras, III
    Etingof P.
    Kazhdan D.
    Selecta Mathematica, 1998, 4 (2) : 233 - 269
  • [42] A triple construction for Lie bialgebras
    Grabowski, JE
    PACIFIC JOURNAL OF MATHEMATICS, 2005, 221 (02) : 281 - 301
  • [43] Quantization of Lie bialgebras, II
    Etingof P.
    Kazhdan D.
    Selecta Mathematica, 1998, 4 (2) : 213 - 231
  • [44] Lie 2-Bialgebras
    Bai, Chengming
    Sheng, Yunhe
    Zhu, Chenchang
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2013, 320 (01) : 149 - 172
  • [45] Atiyah Classes of Lie Bialgebras
    Hong, Wei
    JOURNAL OF LIE THEORY, 2019, 29 (01) : 263 - 275
  • [46] On quantization functors of Lie bialgebras
    Enriquez, B
    ACTA APPLICANDAE MATHEMATICAE, 2002, 73 (1-2) : 133 - 140
  • [47] Quantization of coboundary Lie bialgebras
    Enriquez, Benjamin
    Halbout, Gilles
    ANNALS OF MATHEMATICS, 2010, 171 (02) : 1267 - 1345
  • [48] 3-LIE BIALGEBRAS
    Bai, Ruipu
    Cheng, Yu
    Lie, Jiaqian
    Meng, Wei
    ACTA MATHEMATICA SCIENTIA, 2014, 34 (02) : 513 - 522
  • [49] Hamiltonian type Lie bialgebras
    Bin XIN~(1+) Guang-ai SONG~2 Yu-cai SU~3 1 Department of Mathematics
    2 College of Mathematics and Information Science
    3 Department of Mathematics
    ScienceinChina(SeriesA:Mathematics), 2007, (09) : 1267 - 1279
  • [50] Quantization of triangular Lie bialgebras
    Dolgushev, VA
    Isaev, AP
    Lyakhovich, SL
    Sharapov, AA
    CZECHOSLOVAK JOURNAL OF PHYSICS, 2002, 52 (11) : 1195 - 1200