共 50 条
On Quantizable Odd Lie Bialgebras
被引:0
|作者:
Anton Khoroshkin
Sergei Merkulov
Thomas Willwacher
机构:
[1] National Research University Higher School of Economics,International Laboratory of Representation Theory and Mathematical Physics
[2] ITEP,Mathematics Research Unit
[3] Luxembourg University,Institute of Mathematics
[4] University of Zurich,undefined
来源:
关键词:
Lie bialgebras;
deformation quantization;
Poisson structures;
properads and props.;
17B62;
18D50;
55P48;
53D55;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
Motivated by the obstruction to the deformation quantization of Poisson structures in infinite dimensions, we introduce the notion of a quantizable odd Lie bialgebra. The main result of the paper is a construction of the highly non-trivial minimal resolution of the properad governing such Lie bialgebras, and its link with the theory of so-called quantizable Poisson structures.
引用
收藏
页码:1199 / 1215
页数:16
相关论文