On Quantizable Odd Lie Bialgebras

被引:0
|
作者
Anton Khoroshkin
Sergei Merkulov
Thomas Willwacher
机构
[1] National Research University Higher School of Economics,International Laboratory of Representation Theory and Mathematical Physics
[2] ITEP,Mathematics Research Unit
[3] Luxembourg University,Institute of Mathematics
[4] University of Zurich,undefined
来源
关键词
Lie bialgebras; deformation quantization; Poisson structures; properads and props.; 17B62; 18D50; 55P48; 53D55;
D O I
暂无
中图分类号
学科分类号
摘要
Motivated by the obstruction to the deformation quantization of Poisson structures in infinite dimensions, we introduce the notion of a quantizable odd Lie bialgebra. The main result of the paper is a construction of the highly non-trivial minimal resolution of the properad governing such Lie bialgebras, and its link with the theory of so-called quantizable Poisson structures.
引用
收藏
页码:1199 / 1215
页数:16
相关论文
共 50 条
  • [31] Hamiltonian type lie bialgebras
    Xin, Bin
    Song, Guang-ai
    Su, Yu-cai
    SCIENCE IN CHINA SERIES A-MATHEMATICS, 2007, 50 (09): : 1267 - 1279
  • [32] Lie 2-Bialgebras
    Chengming Bai
    Yunhe Sheng
    Chenchang Zhu
    Communications in Mathematical Physics, 2013, 320 : 149 - 172
  • [33] Factorizable Lie Bialgebras, Quadratic Rota-Baxter Lie Algebras and Rota-Baxter Lie Bialgebras
    Lang, Honglei
    Sheng, Yunhe
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2023, 397 (02) : 763 - 791
  • [34] Quantization of Lie bialgebras revisited
    Severa, Pavol
    SELECTA MATHEMATICA-NEW SERIES, 2016, 22 (03): : 1563 - 1581
  • [35] On simple real Lie bialgebras
    Andruskiewitsch, N
    Jancsa, P
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2004, 2004 (03) : 139 - 158
  • [36] On the associative analog of Lie bialgebras
    Aguiar, M
    JOURNAL OF ALGEBRA, 2001, 244 (02) : 492 - 532
  • [37] Hamiltonian type Lie bialgebras
    Bin Xin
    Guang-ai Song
    Yu-cai Su
    Science in China Series A: Mathematics, 2007, 50 : 1267 - 1279
  • [38] LIE BIALGEBRAS MODULES AND COHOMOLOGY
    LECOMTE, PBA
    ROGER, C
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1990, 310 (06): : 405 - 410
  • [39] Extending Structures for Lie Bialgebras
    Hong, Yanyong
    JOURNAL OF LIE THEORY, 2023, 33 (03) : 783 - 798
  • [40] Quantization of inhomogeneous Lie bialgebras
    Kulish, PP
    Mudrov, AI
    JOURNAL OF GEOMETRY AND PHYSICS, 2002, 42 (1-2) : 64 - 77