On Quantizable Odd Lie Bialgebras

被引:0
|
作者
Anton Khoroshkin
Sergei Merkulov
Thomas Willwacher
机构
[1] National Research University Higher School of Economics,International Laboratory of Representation Theory and Mathematical Physics
[2] ITEP,Mathematics Research Unit
[3] Luxembourg University,Institute of Mathematics
[4] University of Zurich,undefined
来源
关键词
Lie bialgebras; deformation quantization; Poisson structures; properads and props.; 17B62; 18D50; 55P48; 53D55;
D O I
暂无
中图分类号
学科分类号
摘要
Motivated by the obstruction to the deformation quantization of Poisson structures in infinite dimensions, we introduce the notion of a quantizable odd Lie bialgebra. The main result of the paper is a construction of the highly non-trivial minimal resolution of the properad governing such Lie bialgebras, and its link with the theory of so-called quantizable Poisson structures.
引用
收藏
页码:1199 / 1215
页数:16
相关论文
共 50 条
  • [21] QUANTIZATION OF LIE BIALGEBRAS
    RESHETIKHIN, N
    DUKE MATHEMATICAL JOURNAL, 1992, 67 (01) : 143 - 151
  • [22] Lie bialgebras arising from alternative and Jordan bialgebras
    M. E. Goncharov
    Siberian Mathematical Journal, 2010, 51 : 215 - 228
  • [23] Polydifferential Lie bialgebras and graph complexesPolydifferential Lie bialgebras and graph complexesV. Wolff
    Vincent Wolff
    Letters in Mathematical Physics, 115 (2)
  • [24] Lie bialgebras arising from alternative and Jordan bialgebras
    Goncharov, M. E.
    SIBERIAN MATHEMATICAL JOURNAL, 2010, 51 (02) : 215 - 228
  • [25] On Lie 2-bialgebras
    Qiao Yu
    Zhao Jia
    CommunicationsinMathematicalResearch, 2018, 34 (01) : 54 - 64
  • [26] 3-LIE BIALGEBRAS
    白瑞蒲
    程宇
    李佳倩
    孟伟
    Acta Mathematica Scientia, 2014, 34 (02) : 513 - 522
  • [27] Braided-Lie bialgebras
    Majid, S
    PACIFIC JOURNAL OF MATHEMATICS, 2000, 192 (02) : 329 - 356
  • [28] On Quantization Functors of Lie Bialgebras
    B. Enriquez
    Acta Applicandae Mathematica, 2002, 73 : 133 - 140
  • [29] Quantization of Lie bialgebras revisited
    Pavol Ševera
    Selecta Mathematica, 2016, 22 : 1563 - 1581
  • [30] n-Lie bialgebras
    Bai, Ruipu
    Guo, Weiwei
    Lin, Lixin
    Zhang, Yan
    LINEAR & MULTILINEAR ALGEBRA, 2018, 66 (02): : 382 - 397