On Quantizable Odd Lie Bialgebras

被引:0
|
作者
Anton Khoroshkin
Sergei Merkulov
Thomas Willwacher
机构
[1] National Research University Higher School of Economics,International Laboratory of Representation Theory and Mathematical Physics
[2] ITEP,Mathematics Research Unit
[3] Luxembourg University,Institute of Mathematics
[4] University of Zurich,undefined
来源
关键词
Lie bialgebras; deformation quantization; Poisson structures; properads and props.; 17B62; 18D50; 55P48; 53D55;
D O I
暂无
中图分类号
学科分类号
摘要
Motivated by the obstruction to the deformation quantization of Poisson structures in infinite dimensions, we introduce the notion of a quantizable odd Lie bialgebra. The main result of the paper is a construction of the highly non-trivial minimal resolution of the properad governing such Lie bialgebras, and its link with the theory of so-called quantizable Poisson structures.
引用
收藏
页码:1199 / 1215
页数:16
相关论文
共 50 条
  • [1] On Quantizable Odd Lie Bialgebras
    Khoroshkin, Anton
    Merkulov, Sergei
    Willwacher, Thomas
    LETTERS IN MATHEMATICAL PHYSICS, 2016, 106 (09) : 1199 - 1215
  • [2] Jordan bialgebras and their relation to Lie bialgebras
    V. N. Zhelyabin
    Algebra and Logic, 1997, 36 (1) : 1 - 15
  • [3] Strongly Homotopy Lie Bialgebras and Lie Quasi-bialgebras
    Olga Kravchenko
    Letters in Mathematical Physics, 2007, 81 : 19 - 40
  • [4] Strongly homotopy lie bialgebras and lie quasi-bialgebras
    Kravchenko, Olga
    LETTERS IN MATHEMATICAL PHYSICS, 2007, 81 (01) : 19 - 40
  • [5] Lie Bialgebras with Triality and Mal’tsev Bialgebras
    M. E. Goncharov
    Algebra and Logic, 2016, 55 : 198 - 216
  • [6] Lie Bialgebras with Triality and Mal'tsev Bialgebras
    Goncharov, M. E.
    ALGEBRA AND LOGIC, 2016, 55 (03) : 198 - 216
  • [7] Infinite-dimensional Lie bialgebras via affinization of perm bialgebras and pre-Lie bialgebras
    Lin, Yuanchang
    Zhou, Peng
    Bai, Chengming
    JOURNAL OF ALGEBRA, 2025, 663 : 210 - 258
  • [8] Biquantization of Lie bialgebras
    Kassel, C
    Turaev, V
    PACIFIC JOURNAL OF MATHEMATICS, 2000, 195 (02) : 297 - 369
  • [9] Jordan bialgebras of symmetric elements and Lie bialgebras
    V. N. Zhelyabin
    Siberian Mathematical Journal, 1998, 39 : 261 - 276
  • [10] Factorizable Lie Bialgebras, Quadratic Rota–Baxter Lie Algebras and Rota–Baxter Lie Bialgebras
    Honglei Lang
    Yunhe Sheng
    Communications in Mathematical Physics, 2023, 397 : 763 - 791