Multi-objective evolutionary algorithms and phylogenetic inference with multiple data sets

被引:0
|
作者
L. Poladian
L.S. Jermiin
机构
[1] University of Sydney,School of Mathematics and Statistics
[2] University of Sydney,School of Biological Sciences, and the Sydney University Biological Informatics and Technology Centre
来源
Soft Computing | 2006年 / 10卷
关键词
Phylogenetic inference; Evolutionary algorithms; Multiobjective optimisation;
D O I
暂无
中图分类号
学科分类号
摘要
Evolutionary relationships among species are usually (1) illustrated by means of a phylogenetic tree and (2) inferred by optimising some measure of fitness, such as the total evolutionary distance between species or the likelihood of the tree (given a model of the evolutionary process and a data set). The combinatorial complexity of inferring the topology of the best tree makes phylogenetic inference an ideal candidate for evolutionary algorithms. However, difficulties arise when different data sets provide conflicting information about the inferred `best' tree(s). We apply the techniques of multi-objective optimisation to phylogenetic inference for the first time. We use the simplest model of evolution and a four species problem to illustrate the method.
引用
收藏
页码:359 / 368
页数:9
相关论文
共 50 条
  • [41] Parallelization of multi-objective evolutionary algorithms using clustering algorithms
    Streichert, F
    Ulmer, H
    Zell, A
    [J]. EVOLUTIONARY MULTI-CRITERION OPTIMIZATION, 2005, 3410 : 92 - 107
  • [42] BICLUSTERING ANALYSIS OF GENE EXPRESSION DATA USING MULTI-OBJECTIVE EVOLUTIONARY ALGORITHMS
    Golchin, Maryam
    Davarpanah, Seyed Hashem
    Liew, Alan Wee-Chung
    [J]. PROCEEDINGS OF 2015 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOL. 2, 2015, : 505 - 510
  • [43] Data Mining Using Parallel Multi-Objective Evolutionary Algorithms on Graphics Hardware
    Wong, Man-Leung
    Cui, Geng
    [J]. 2010 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2010,
  • [44] Multi-criterion phylogenetic inference using evolutionary algorithms
    Cancino, Waldo
    Delbem, A. C. B.
    [J]. 2007 IEEE SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE IN BIOINFORMATICS AND COMPUTATIONAL BIOLOGY, 2007, : 351 - +
  • [45] Multi-objective topology optimization using evolutionary algorithms
    Kunakote, Tawatchai
    Bureerat, Sujin
    [J]. ENGINEERING OPTIMIZATION, 2011, 43 (05) : 541 - 557
  • [46] Preference incorporation in Multi-Objective Evolutionary Algorithms: A survey
    Rachmawati, L.
    Srinivasan, D.
    [J]. 2006 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-6, 2006, : 954 - +
  • [47] Convergence properties of some multi-objective evolutionary algorithms
    Rudolph, G
    Agapie, A
    [J]. PROCEEDINGS OF THE 2000 CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1 AND 2, 2000, : 1010 - 1016
  • [48] Multi-Objective Network Interdiction Using Evolutionary Algorithms
    Rocco S, Claudio M.
    Salazar A, Daniel E.
    Ramirez-Marquez, Jose E.
    [J]. ANNUAL RELIABILITY AND MAINTAINABILITY SYMPOSIUM, 2009 PROCEEDINGS, 2009, : 170 - +
  • [49] Maximising hypervolume for selection in multi-objective evolutionary algorithms
    Bradstreet, Lucas
    Barone, Luigi
    While, Lyndon
    [J]. 2006 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-6, 2006, : 1729 - +
  • [50] Dynamic multi-objective evolutionary algorithms in noisy environments
    Sahmoud, Shaaban
    Topcuoglu, Haluk Rahmi
    [J]. INFORMATION SCIENCES, 2023, 634 : 650 - 664