BICLUSTERING ANALYSIS OF GENE EXPRESSION DATA USING MULTI-OBJECTIVE EVOLUTIONARY ALGORITHMS

被引:0
|
作者
Golchin, Maryam [1 ]
Davarpanah, Seyed Hashem [1 ]
Liew, Alan Wee-Chung [1 ]
机构
[1] Griffith Univ, Sch Informat & Commun Technol, Nathan, Qld 4111, Australia
关键词
Biclustering; Gene expression data; Multi-objective evolutionary algorithm; SPEA2;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Clustering is an unsupervised learning technique that groups data into clusters using the entire conditions. However, sometimes, data is similar only under a subsetof conditions. Biclustering allows clustering of rows and columns of a dataset simultaneously. It extracts more accurate information from sparse datasets. In recent years, biclustering has found many useful applications in different fields and many biclustering algorithms have been proposed. Using both row and column information of data, biclustering requires the optimization of two conflicting objectives. In this study, a new multi-objective evolutionary biclustering framework using SPEA2 is proposed. A heuristic local search based on the gene and condition deletion and addition is added into SPEA2 and the best bicluster is selected usinga new quantitative measure that considers both its coherence and size. The performance of our algorithm is evaluatedusing simulated and gene expression data and compared with several well-known biclustering methods. The experimental results demonstrate better performance with respect to the size and MSR of detected biclusters and significant enrichment of detected genes.
引用
收藏
页码:505 / 510
页数:6
相关论文
共 50 条
  • [1] Multi-objective evolutionary biclustering of gene expression data
    Mitra, Sushmita
    Banka, Haider
    [J]. PATTERN RECOGNITION, 2006, 39 (12) : 2464 - 2477
  • [2] Improving an Evolutionary Multi-objective Algorithm for the Biclustering of Gene Expression Data
    Brizuela, Carlos A.
    Luna-Taylor, Jorge E.
    Martinez-Perez, Israel
    Guillen, Hugo A.
    Rodriguez, David O.
    Beltran-Verdugo, Armando
    [J]. 2013 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2013, : 221 - 228
  • [3] Multi-objective Evolutionary Algorithm for Biclustering in Microarrays Data
    Seridi, Khedidja
    Jourdan, Laetitia
    Talbi, El-Ghazali
    [J]. 2011 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2011, : 2593 - 2599
  • [4] On Evolutionary Algorithms for Biclustering of Gene Expression Data
    Carballido Jessica, A.
    Gallo Cristian, A.
    Dussaut Julieta, S.
    Ignacio, Ponzoni
    [J]. CURRENT BIOINFORMATICS, 2015, 10 (03) : 259 - 267
  • [5] Multi-Objective Evolutionary Algorithms based Interpretable Fuzzy Models for Microarray Gene Expression Data Analysis
    Wang, Zhenyu
    Palade, Vasile
    [J]. 2010 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE, 2010, : 308 - 313
  • [6] Data mining rules using multi-objective evolutionary algorithms
    de la Iglesia, B
    Philpott, MS
    Bagnall, AJ
    Rayward-Smith, VJ
    [J]. CEC: 2003 CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-4, PROCEEDINGS, 2003, : 1552 - 1559
  • [7] Data Structures in Multi-Objective Evolutionary Algorithms
    Najwa Altwaijry
    Mohamed El Bachir Menai
    [J]. Journal of Computer Science & Technology, 2012, 27 (06) : 1197 - 1210
  • [8] Data Structures in Multi-Objective Evolutionary Algorithms
    Altwaijry, Najwa
    Menai, Mohamed El Bachir
    [J]. JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY, 2012, 27 (06) : 1197 - 1210
  • [9] Data Structures in Multi-Objective Evolutionary Algorithms
    Najwa Altwaijry
    Mohamed El Bachir Menai
    [J]. Journal of Computer Science and Technology, 2012, 27 : 1197 - 1210
  • [10] Analysis of Evolutionary Algorithms using Multi-Objective Parameter Tuning
    Ugolotti, Roberto
    Cagnoni, Stefano
    [J]. GECCO'14: PROCEEDINGS OF THE 2014 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, 2014, : 1343 - 1350