Data mining rules using multi-objective evolutionary algorithms

被引:0
|
作者
de la Iglesia, B [1 ]
Philpott, MS [1 ]
Bagnall, AJ [1 ]
Rayward-Smith, VJ [1 ]
机构
[1] Univ E Anglia, Norwich NR4 7TJ, Norfolk, England
关键词
D O I
暂无
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
In data mining, nugget discovery is the discovery of interesting classification rules that apply to a target class. In previous research, heuristic methods (Genetic algorithms, Simulated Annealing and Tabu Search) have been used to optimise a single measure of interest. This paper proposes the use of multi-objective optimisation evolutionary algorithms to allow the user to interactively select a number of interest measures and deliver the best nuggets (an approximation to the Pareto-optimal set) according to those measures. Initial experiments are conducted on a number of databases, using an implementation of the Fast Elitist Non-Dominated Sorting Genetic Algorithm (NSGA), and two well known measures of interest. Comparisons with the results obtained using modern heuristic methods are presented. Results indicate the potential of multi-objective evolutionary algorithms for the task of nugget discovery.
引用
收藏
页码:1552 / 1559
页数:8
相关论文
共 50 条
  • [1] Mining classification rules using evolutionary multi-objective algorithms
    Kshetrapalapuram, KK
    Kirley, M
    [J]. KNOWLEDGE-BASED INTELLIGENT INFORMATION AND ENGINEERING SYSTEMS, PT 3, PROCEEDINGS, 2005, 3683 : 959 - 965
  • [2] Data Mining Using Parallel Multi-Objective Evolutionary Algorithms on Graphics Hardware
    Wong, Man-Leung
    Cui, Geng
    [J]. 2010 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2010,
  • [3] Data Structures in Multi-Objective Evolutionary Algorithms
    Altwaijry, Najwa
    Menai, Mohamed El Bachir
    [J]. JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY, 2012, 27 (06) : 1197 - 1210
  • [4] Data Structures in Multi-Objective Evolutionary Algorithms
    Najwa Altwaijry
    Mohamed El Bachir Menai
    [J]. Journal of Computer Science and Technology, 2012, 27 : 1197 - 1210
  • [5] Data Structures in Multi-Objective Evolutionary Algorithms
    Najwa Altwaijry
    Mohamed El Bachir Menai
    [J]. Journal of Computer Science & Technology, 2012, 27 (06) : 1197 - 1210
  • [6] Association Rule Mining Using Multi-objective Evolutionary Algorithms: Strengths and Challenges
    Anand, Rajul
    Vaid, Abhishek
    Singh, Pramod Kumar
    [J]. 2009 WORLD CONGRESS ON NATURE & BIOLOGICALLY INSPIRED COMPUTING (NABIC 2009), 2009, : 384 - 389
  • [7] Robustness using Multi-Objective Evolutionary Algorithms
    Gaspar-Cunha, A.
    Covas, J. A.
    [J]. APPLICATIONS OF SOFT COMPUTING: RECENT TRENDS, 2006, : 353 - +
  • [8] Parallelization of multi-objective evolutionary algorithms using clustering algorithms
    Streichert, F
    Ulmer, H
    Zell, A
    [J]. EVOLUTIONARY MULTI-CRITERION OPTIMIZATION, 2005, 3410 : 92 - 107
  • [9] Grammar-based multi-objective algorithms for mining association rules
    Luna, J. M.
    Romero, J. R.
    Ventura, S.
    [J]. DATA & KNOWLEDGE ENGINEERING, 2013, 86 : 19 - 37
  • [10] Mining numerical association rules via multi-objective genetic algorithms
    Minaei-Bidgoli, B.
    Barmaki, R.
    Nasiri, M.
    [J]. INFORMATION SCIENCES, 2013, 233 : 15 - 24