Convergence properties of some multi-objective evolutionary algorithms

被引:0
|
作者
Rudolph, G [1 ]
Agapie, A [1 ]
机构
[1] Univ Dortmund, Dept Comp Sci, D-44221 Dortmund, Germany
关键词
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We present four abstract evolutionary algorithms for multiobjective optimization and theoretical results that characterize their convergence behavior. Thanks to these results it is easy to verify whether or not a particular instantiation of these abstract evolutionary algorithms offers the desired limit behavior. Several examples are given.
引用
收藏
页码:1010 / 1016
页数:7
相关论文
共 50 条
  • [1] On the convergence properties of quantum-inspired multi-objective evolutionary algorithms
    Li, Zhiyong
    Li, Zhe
    Rudolph, Guenter
    [J]. ADVANCED INTELLIGENT COMPUTING THEORIES AND APPLICATIONS: WITH ASPECTS OF CONTEMPORARY INTELLIGENT COMPUTING TECHNIQUES, 2007, 2 : 245 - +
  • [2] The Impact of Population Size on the Convergence of Multi-objective Evolutionary Algorithms
    Benecke, Tobias
    Mostaghim, Sanaz
    [J]. 2021 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (IEEE SSCI 2021), 2021,
  • [3] Online Convergence Detection for Evolutionary Multi-Objective Algorithms Revisited
    Wagner, Tobias
    Trautmann, Heike
    [J]. 2010 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2010,
  • [4] Statistical Methods for Convergence Detection of Multi-Objective Evolutionary Algorithms
    Trautmann, H.
    Wagner, T.
    Naujoks, B.
    Preuss, M.
    Mehnen, J.
    [J]. EVOLUTIONARY COMPUTATION, 2009, 17 (04) : 493 - 509
  • [5] On the convergence of multi-objective descent algorithms
    Brown, Martin
    Hutauruk, Nicky
    [J]. 2007 IEEE SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE IN MULTI-CRITERIA DECISION MAKING, 2007, : 253 - +
  • [6] An effective model of multiple multi-objective evolutionary algorithms with the assistance of regional multi-objective evolutionary algorithms: VIPMOEAs
    Cheshmehgaz, Hossein Rajabalipour
    Desa, Mohamad Ishak
    Wibowo, Antoni
    [J]. APPLIED SOFT COMPUTING, 2013, 13 (05) : 2863 - 2895
  • [7] Convergence performance comparison of quantum-inspired multi-objective evolutionary algorithms
    Li, Zhiyong
    Rudolph, Guenter
    Li, Kenli
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2009, 57 (11-12) : 1843 - 1854
  • [8] Convergence of multi-objective evolutionary algorithms to a uniformly distributed representation of the Pareto front
    Chen, Yu
    Zou, Xiufen
    Xie, Weicheng
    [J]. INFORMATION SCIENCES, 2011, 181 (16) : 3336 - 3355
  • [9] Convergence and Diversity Analysis of Indicator-based Multi-Objective Evolutionary Algorithms
    Guillermo Falcon-Cardona, Jesus
    Coello, Carlos A. Coello
    [J]. PROCEEDINGS OF THE 2019 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE (GECCO'19), 2019, : 524 - 531
  • [10] Genetic diversity as an objective in multi-objective evolutionary algorithms
    Toffolo, A
    Benini, E
    [J]. EVOLUTIONARY COMPUTATION, 2003, 11 (02) : 151 - 167