On Nonlocal Boundary Value Problems for Nonlinear Integro-differential Equations of Arbitrary Fractional Order

被引:1
|
作者
Bashir Ahmad
机构
[1] King Abdulaziz University,Department of Mathematics, Faculty of Science
来源
Results in Mathematics | 2013年 / 63卷
关键词
Primary 26A33; Secondary 34B15; Nonlinear fractional differential equations; nonlocal boundary conditions; existence; fixed point theorem;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we prove the existence of solutions of a nonlocal boundary value problem for nonlinear integro-differential equations of fractional order given by \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \begin{array}{ll} ^cD^qx(t) = f(t,x(t),(\phi x)(t),(\psi x)(t)), \quad 0 < t < 1,\\x(0) = \beta x(\eta), x'(0) =0, x''(0) =0, \ldots, x^{(m-2)}(0) =0, x(1)= \alpha x(\eta), \end{array}$$\end{document}where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${q \in (m-1, m], m \in \mathbb{N}, m \ge 2}$, $0< \eta <1$$\end{document} , and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\phi x}$$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\psi x}$$\end{document} are integral operators. The existence results are established by means of the contraction mapping principle and Krasnoselskii’s fixed point theorem. An illustrative example is also presented.
引用
收藏
页码:183 / 194
页数:11
相关论文
共 50 条
  • [41] A compact discretization of the boundary value problems of the nonlinear Fredholm integro-differential equations
    Amiri, Sadegh
    Hajipour, Mojtaba
    JOURNAL OF MATHEMATICAL MODELING, 2024, 12 (02): : 233 - 246
  • [42] Boundary value problems for systems of nonlinear integro-differential equations with deviating arguments
    Wang, Guotao
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2010, 234 (05) : 1356 - 1363
  • [43] On Sequential Fractional Integro-Differential Equations with Nonlocal Integral Boundary Conditions
    Bashir Ahmad
    Ahmed Alsaedi
    Ravi P. Agarwal
    Alaa Alsharif
    Bulletin of the Malaysian Mathematical Sciences Society, 2018, 41 : 1725 - 1737
  • [44] On Sequential Fractional Integro-Differential Equations with Nonlocal Integral Boundary Conditions
    Ahmad, Bashir
    Alsaedi, Ahmed
    Agarwal, Ravi P.
    Alsharif, Alaa
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2018, 41 (04) : 1725 - 1737
  • [45] System of Nonlinear Volterra Integro-Differential Equations of Arbitrary Order
    Parand, Kourosh
    Delkhosh, Mehdi
    BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2018, 36 (04): : 33 - 54
  • [46] Boundary value problems for second order integro-differential equations of mixed type
    Li, Longtu
    Hunan Daxue Xuebao/Journal of Hunan University Natural Sciences, 1995, 22 (06):
  • [47] A nonlocal Cauchy problem for nonlinear generalized fractional integro-differential equations
    Kharat, Vinod V.
    Tate, Shivaji
    Reshimkar, Anand Rajshekhar
    STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2023, 68 (03): : 489 - 506
  • [48] Integro-Differential Equations of Fractional Order
    Saïd Abbas
    Mouffak Benchohra
    John R. Graef
    Differential Equations and Dynamical Systems, 2012, 20 (2) : 139 - 148
  • [49] Integro-Differential Equations of Fractional Order
    Abbas, Said
    Benchohra, Mouffak
    Graef, John R.
    DIFFERENTIAL EQUATIONS AND DYNAMICAL SYSTEMS, 2012, 20 (02) : 139 - 148
  • [50] Existence of solutions for integro-differential equations of fractional order with nonlocal three-point fractional boundary conditions
    Ravi P Agarwal
    Sotiris K Ntouyas
    Bashir Ahmad
    Mohammed S Alhothuali
    Advances in Difference Equations, 2013