On Nonlocal Boundary Value Problems for Nonlinear Integro-differential Equations of Arbitrary Fractional Order

被引:1
|
作者
Bashir Ahmad
机构
[1] King Abdulaziz University,Department of Mathematics, Faculty of Science
来源
Results in Mathematics | 2013年 / 63卷
关键词
Primary 26A33; Secondary 34B15; Nonlinear fractional differential equations; nonlocal boundary conditions; existence; fixed point theorem;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we prove the existence of solutions of a nonlocal boundary value problem for nonlinear integro-differential equations of fractional order given by \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \begin{array}{ll} ^cD^qx(t) = f(t,x(t),(\phi x)(t),(\psi x)(t)), \quad 0 < t < 1,\\x(0) = \beta x(\eta), x'(0) =0, x''(0) =0, \ldots, x^{(m-2)}(0) =0, x(1)= \alpha x(\eta), \end{array}$$\end{document}where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${q \in (m-1, m], m \in \mathbb{N}, m \ge 2}$, $0< \eta <1$$\end{document} , and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\phi x}$$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\psi x}$$\end{document} are integral operators. The existence results are established by means of the contraction mapping principle and Krasnoselskii’s fixed point theorem. An illustrative example is also presented.
引用
收藏
页码:183 / 194
页数:11
相关论文
共 50 条