On Nonlocal Boundary Value Problems for Nonlinear Integro-differential Equations of Arbitrary Fractional Order

被引:1
|
作者
Bashir Ahmad
机构
[1] King Abdulaziz University,Department of Mathematics, Faculty of Science
来源
Results in Mathematics | 2013年 / 63卷
关键词
Primary 26A33; Secondary 34B15; Nonlinear fractional differential equations; nonlocal boundary conditions; existence; fixed point theorem;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we prove the existence of solutions of a nonlocal boundary value problem for nonlinear integro-differential equations of fractional order given by \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \begin{array}{ll} ^cD^qx(t) = f(t,x(t),(\phi x)(t),(\psi x)(t)), \quad 0 < t < 1,\\x(0) = \beta x(\eta), x'(0) =0, x''(0) =0, \ldots, x^{(m-2)}(0) =0, x(1)= \alpha x(\eta), \end{array}$$\end{document}where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${q \in (m-1, m], m \in \mathbb{N}, m \ge 2}$, $0< \eta <1$$\end{document} , and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\phi x}$$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\psi x}$$\end{document} are integral operators. The existence results are established by means of the contraction mapping principle and Krasnoselskii’s fixed point theorem. An illustrative example is also presented.
引用
收藏
页码:183 / 194
页数:11
相关论文
共 50 条
  • [21] ON NONLOCAL INTEGRAL BOUNDARY VALUE PROBLEMS FOR IMPULSIVE NONLINEAR DIFFERENTIAL EQUATIONS OF FRACTIONAL ORDER
    Wang, Guotao
    Ahmad, Bashir
    Zhang, Lihong
    FIXED POINT THEORY, 2014, 15 (01): : 265 - 284
  • [22] Nonlinear Boundary Value Problems for First Order Integro-Differential Equations with Impulsive Integral Conditions
    Liu, Zhenhai
    Han, Jiangfeng
    Fang, Lijing
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2013, 36 (02) : 435 - 446
  • [23] Existence and Uniqueness of Solutions for Nonlinear Fractional Integro-Differential Equations with Nonlocal Boundary Conditions
    Mardanov, M. J.
    Sharifov, Y. A.
    Aliyev, H. N.
    EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2022, 15 (02): : 726 - 735
  • [24] A Nonlinear Integro-Differential Equation with Fractional Order and Nonlocal Conditions
    Wahash, Hanan A.
    Abdo, Mohammed S.
    Panchal, Satish K.
    JOURNAL OF APPLIED NONLINEAR DYNAMICS, 2020, 9 (03) : 469 - 481
  • [25] On Hadamard fractional integro-differential boundary value problems
    Ahmad B.
    Ntouyas S.K.
    Journal of Applied Mathematics and Computing, 2014, 47 (1-2) : 119 - 131
  • [26] Existence theorems for nonlocal multivalued Hadamard fractional integro-differential boundary value problems
    Ahmad, Bashir
    Ntouyas, Sotiris K.
    Alsaedi, Ahmed
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2014,
  • [27] Existence theorems for nonlocal multivalued Hadamard fractional integro-differential boundary value problems
    Bashir Ahmad
    Sotiris K Ntouyas
    Ahmed Alsaedi
    Journal of Inequalities and Applications, 2014
  • [28] Periodic boundary value problems for impulsive conformable fractional integro-differential equations
    Asawasamrit, Suphawat
    Ntouyas, Sotiris K.
    Thiramanus, Phollakrit
    Tariboon, Jessada
    BOUNDARY VALUE PROBLEMS, 2016,
  • [29] Periodic boundary value problems for impulsive conformable fractional integro-differential equations
    Suphawat Asawasamrit
    Sotiris K Ntouyas
    Phollakrit Thiramanus
    Jessada Tariboon
    Boundary Value Problems, 2016
  • [30] Application of the fractional differential transform method to fractional-order integro-differential equations with nonlocal boundary conditions
    Nazari, D.
    Shahmorad, S.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2010, 234 (03) : 883 - 891