On Nonlocal Boundary Value Problems for Nonlinear Integro-differential Equations of Arbitrary Fractional Order

被引:1
|
作者
Bashir Ahmad
机构
[1] King Abdulaziz University,Department of Mathematics, Faculty of Science
来源
Results in Mathematics | 2013年 / 63卷
关键词
Primary 26A33; Secondary 34B15; Nonlinear fractional differential equations; nonlocal boundary conditions; existence; fixed point theorem;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we prove the existence of solutions of a nonlocal boundary value problem for nonlinear integro-differential equations of fractional order given by \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \begin{array}{ll} ^cD^qx(t) = f(t,x(t),(\phi x)(t),(\psi x)(t)), \quad 0 < t < 1,\\x(0) = \beta x(\eta), x'(0) =0, x''(0) =0, \ldots, x^{(m-2)}(0) =0, x(1)= \alpha x(\eta), \end{array}$$\end{document}where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${q \in (m-1, m], m \in \mathbb{N}, m \ge 2}$, $0< \eta <1$$\end{document} , and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\phi x}$$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\psi x}$$\end{document} are integral operators. The existence results are established by means of the contraction mapping principle and Krasnoselskii’s fixed point theorem. An illustrative example is also presented.
引用
收藏
页码:183 / 194
页数:11
相关论文
共 50 条
  • [1] On Nonlocal Boundary Value Problems for Nonlinear Integro-differential Equations of Arbitrary Fractional Order
    Ahmad, Bashir
    RESULTS IN MATHEMATICS, 2013, 63 (1-2) : 183 - 194
  • [2] On four-point nonlocal boundary value problems of nonlinear integro-differential equations of fractional order
    Ahmad, Bashir
    Sivasundaram, S.
    APPLIED MATHEMATICS AND COMPUTATION, 2010, 217 (02) : 480 - 487
  • [3] INTEGRAL BOUNDARY VALUE PROBLEMS FOR FRACTIONAL ORDER INTEGRO-DIFFERENTIAL EQUATIONS
    Liu, Zhenhai
    Han, Jiangfeng
    DYNAMIC SYSTEMS AND APPLICATIONS, 2012, 21 (04): : 535 - 547
  • [4] Nonlinear boundary value problems of fractional functional integro-differential equations
    Liu, Zhenhai
    Sun, Jihua
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2012, 64 (10) : 3228 - 3234
  • [5] Nonlinear fractional differential equations with nonlocal fractional integro-differential boundary conditions
    Bashir Ahmad
    Ahmed Alsaedi
    Boundary Value Problems, 2012
  • [6] Nonlinear fractional differential equations with nonlocal fractional integro-differential boundary conditions
    Ahmad, Bashir
    Alsaedi, Ahmed
    BOUNDARY VALUE PROBLEMS, 2012,
  • [7] Nonlocal Integro-Differential Boundary Value Problems for the Third-Order Equations
    Popov, Nikolay S.
    9TH INTERNATIONAL CONFERENCE ON MATHEMATICAL MODELING: DEDICATED TO THE 75TH ANNIVERSARY OF PROFESSOR V.N. VRAGOV, 2021, 2328
  • [8] On boundary value problems of higher order abstract fractional integro-differential equations
    Thabet, Sabri T. M.
    Dhakne, Machindra B.
    INTERNATIONAL JOURNAL OF NONLINEAR ANALYSIS AND APPLICATIONS, 2016, 7 (02): : 165 - 184
  • [9] On the Boundary Value Problem of Nonlinear Fractional Integro-Differential Equations
    Li, Chenkuan
    Saadati, Reza
    Srivastava, Rekha
    Beaudin, Joshua
    MATHEMATICS, 2022, 10 (12)
  • [10] Nonlocal Sequential Boundary Value Problems for Hilfer Type Fractional Integro-Differential Equations and Inclusions
    Phuangthong, Nawapol
    Ntouyas, Sotiris K.
    Tariboon, Jessada
    Nonlaopon, Kamsing
    MATHEMATICS, 2021, 9 (06)