The Dynamical Sine-Gordon Model

被引:0
|
作者
Martin Hairer
Hao Shen
机构
[1] University of Warwick,
来源
关键词
Heat Kernel; Admissible Graph; Parabolic Scaling; Piecewise Linear Path; Multiplicative Gaussian Chaos;
D O I
暂无
中图分类号
学科分类号
摘要
We introduce the dynamical sine-Gordon equation in two space dimensions with parameter β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\beta}$$\end{document}, which is the natural dynamic associated to the usual quantum sine-Gordon model. It is shown that when β2∈(0,16π3)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\beta^{2} \in (0, \frac{16\pi}{3})}$$\end{document} the Wick renormalised equation is well-posed. In the regime β2∈(0,4π)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\beta^{2} \in (0, 4\pi)}$$\end{document}, the Da Prato–Debussche method [J Funct Anal 196(1):180–210, 2002; Ann Probab 31(4):1900–1916, 2003] applies, while for β2∈[4π,16π3)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\beta^{2} \in [4\pi, \frac{16\pi}{3})}$$\end{document}, the solution theory is provided via the theory of regularity structures [Hairer, Invent Math 198(2):269–504, 2014]. We also show that this model arises naturally from a class of 2+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${2 + 1}$$\end{document} -dimensional equilibrium interface fluctuation models with periodic nonlinearities. The main mathematical difficulty arises in the construction of the model for the associated regularity structure where the role of the noise is played by a non-Gaussian random distribution similar to the complex multiplicative Gaussian chaos recently analysed in Lacoin et al. [Commun Math Phys 337(2):569–632, 2015].
引用
收藏
页码:933 / 989
页数:56
相关论文
共 50 条
  • [41] Quantization of solitons and the restricted Sine-Gordon model
    Babelon, O
    Bernard, D
    Smirnov, FA
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1996, 182 (02) : 319 - 354
  • [42] A nonlocal Poisson bracket of the sine-Gordon model
    Mikhailov, Andrei
    JOURNAL OF GEOMETRY AND PHYSICS, 2011, 61 (01) : 85 - 94
  • [43] Boundary states in SUSY sine-Gordon model
    Bajnok, Z.
    Palla, L.
    Takacs, G.
    Bilinear Integrable Systems: From Classical to Quatum, Continuous to Discrete, 2006, 201 : 35 - 42
  • [44] RENORMALIZABILITY AND NONPRODUCTION IN COMPLEX SINE-GORDON MODEL
    BONNEAU, G
    PHYSICS LETTERS B, 1983, 133 (05) : 341 - 343
  • [45] THE KONDO PROBLEM AS THE QUANTUM SINE-GORDON MODEL
    ZHANG, GM
    CHEN, H
    WU, XA
    COMMUNICATIONS IN THEORETICAL PHYSICS, 1991, 15 (04) : 497 - 500
  • [46] Excited states of the double sine-Gordon model
    Lu, WF
    Xu, BW
    Zhang, YM
    COMMUNICATIONS IN THEORETICAL PHYSICS, 1997, 27 (04) : 485 - 488
  • [47] SINE-GORDON EQUATION
    HEYERHOFF, M
    MATHEMATICAL INTELLIGENCER, 1995, 17 (03): : 4 - &
  • [48] Soliton confinement in the double sine-Gordon model
    Rutkevich, Sergei
    SCIPOST PHYSICS, 2024, 16 (02):
  • [49] Flow equation approach to the sine-Gordon model
    Kehrein, S
    NUCLEAR PHYSICS B, 2001, 592 (03) : 512 - 562
  • [50] The sine-Gordon model with local symmetric potentials
    Ye, F
    Xu, BW
    INTERNATIONAL CONFERENCE ON PHYSICS SINCE PARITY SYMMETRY BREAKING: IN MEMORY OF PROFESSOR C. S. WU, 1998, : 625 - 629