The Dynamical Sine-Gordon Model

被引:0
|
作者
Martin Hairer
Hao Shen
机构
[1] University of Warwick,
来源
关键词
Heat Kernel; Admissible Graph; Parabolic Scaling; Piecewise Linear Path; Multiplicative Gaussian Chaos;
D O I
暂无
中图分类号
学科分类号
摘要
We introduce the dynamical sine-Gordon equation in two space dimensions with parameter β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\beta}$$\end{document}, which is the natural dynamic associated to the usual quantum sine-Gordon model. It is shown that when β2∈(0,16π3)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\beta^{2} \in (0, \frac{16\pi}{3})}$$\end{document} the Wick renormalised equation is well-posed. In the regime β2∈(0,4π)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\beta^{2} \in (0, 4\pi)}$$\end{document}, the Da Prato–Debussche method [J Funct Anal 196(1):180–210, 2002; Ann Probab 31(4):1900–1916, 2003] applies, while for β2∈[4π,16π3)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\beta^{2} \in [4\pi, \frac{16\pi}{3})}$$\end{document}, the solution theory is provided via the theory of regularity structures [Hairer, Invent Math 198(2):269–504, 2014]. We also show that this model arises naturally from a class of 2+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${2 + 1}$$\end{document} -dimensional equilibrium interface fluctuation models with periodic nonlinearities. The main mathematical difficulty arises in the construction of the model for the associated regularity structure where the role of the noise is played by a non-Gaussian random distribution similar to the complex multiplicative Gaussian chaos recently analysed in Lacoin et al. [Commun Math Phys 337(2):569–632, 2015].
引用
收藏
页码:933 / 989
页数:56
相关论文
共 50 条
  • [21] Integrable noncommutative sine-Gordon model
    Lechtenfeld, O
    Mazzanti, L
    Penati, S
    Popov, AD
    Tamassia, L
    NUCLEAR PHYSICS B, 2005, 705 (03) : 477 - 503
  • [22] The sine-Gordon model revisited: I
    Niccoli, G.
    Teschner, J.
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2010,
  • [23] The sine-Gordon model in the presence of defects
    Avan, Jean
    Doikou, Anastasia
    XXTH INTERNATIONAL CONFERENCE ON INTEGRABLE SYSTEMS AND QUANTUM SYMMETRIES (ISQS-20), 2013, 411
  • [24] Quantum quench in the sine-Gordon model
    Bertini, Bruno
    Schuricht, Dirk
    Essler, Fabian H. L.
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2014,
  • [25] DEFECTS IN THE SINE-GORDON MODEL - STATICS
    REISINGER, H
    SCHWABL, F
    ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1983, 52 (02): : 151 - 170
  • [26] Renormalization of the bilocal sine-Gordon model
    Steib, I
    Nagy, S.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2019, 34 (21):
  • [27] An action variable of the sine-Gordon model
    Mikhailov, Andrei
    JOURNAL OF GEOMETRY AND PHYSICS, 2006, 56 (12) : 2429 - 2445
  • [28] DYNAMICAL 2-DIMENSIONAL SOLUTIONS TO THE SINE-GORDON EQUATION
    CHRISTIANSEN, PL
    OLSEN, OH
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1979, 59 (03): : T30 - T31
  • [29] Sine-Gordon on a wormhole
    Bizon, Piotr
    Dunajski, Maciej
    Kahl, Michel
    Kowalczyk, Michel
    NONLINEARITY, 2021, 34 (08) : 5520 - 5537
  • [30] Sine-Gordon revisited
    Dimock, J
    Hurd, TR
    ANNALES HENRI POINCARE, 2000, 1 (03): : 499 - 541