The Dynamical Sine-Gordon Model

被引:0
|
作者
Martin Hairer
Hao Shen
机构
[1] University of Warwick,
来源
关键词
Heat Kernel; Admissible Graph; Parabolic Scaling; Piecewise Linear Path; Multiplicative Gaussian Chaos;
D O I
暂无
中图分类号
学科分类号
摘要
We introduce the dynamical sine-Gordon equation in two space dimensions with parameter β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\beta}$$\end{document}, which is the natural dynamic associated to the usual quantum sine-Gordon model. It is shown that when β2∈(0,16π3)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\beta^{2} \in (0, \frac{16\pi}{3})}$$\end{document} the Wick renormalised equation is well-posed. In the regime β2∈(0,4π)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\beta^{2} \in (0, 4\pi)}$$\end{document}, the Da Prato–Debussche method [J Funct Anal 196(1):180–210, 2002; Ann Probab 31(4):1900–1916, 2003] applies, while for β2∈[4π,16π3)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\beta^{2} \in [4\pi, \frac{16\pi}{3})}$$\end{document}, the solution theory is provided via the theory of regularity structures [Hairer, Invent Math 198(2):269–504, 2014]. We also show that this model arises naturally from a class of 2+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${2 + 1}$$\end{document} -dimensional equilibrium interface fluctuation models with periodic nonlinearities. The main mathematical difficulty arises in the construction of the model for the associated regularity structure where the role of the noise is played by a non-Gaussian random distribution similar to the complex multiplicative Gaussian chaos recently analysed in Lacoin et al. [Commun Math Phys 337(2):569–632, 2015].
引用
收藏
页码:933 / 989
页数:56
相关论文
共 50 条
  • [31] A NEW METHOD OF STUDYING THE DYNAMICAL BEHAVIOR OF THE SINE-GORDON EQUATION
    LIU, ZG
    XU, ZY
    PHYSICS LETTERS A, 1995, 204 (5-6) : 343 - 346
  • [32] Sine-Gordon Model in the Homogeneous Higher Grading
    Zuevsky, Alexander
    INTERNATIONAL CONFERENCE ON STRONGLY CORRELATED ELECTRON SYSTEMS (SCES 2016), 2017, 807
  • [33] The complex sine-Gordon model on a half line
    Bowcock, Peter
    Tzamtzis, Georgios
    JOURNAL OF HIGH ENERGY PHYSICS, 2007, (03):
  • [34] Sine-Gordon Revisited
    J. Dimock
    T.R. Hurd
    Annales Henri Poincaré, 2000, 1 : 499 - 541
  • [35] The sine-Gordon wobble
    Kälbermann, G
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2004, 37 (48): : 11603 - 11612
  • [36] The sine-Gordon model with integrable defects revisited
    Avan, Jean
    Doikou, Anastasia
    JOURNAL OF HIGH ENERGY PHYSICS, 2012, (11):
  • [37] MOMENTUM SPACE RENORMALIZATION FOR THE SINE-GORDON MODEL
    KNOPS, HJF
    OUDEN, LWJD
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 1980, 103 (03) : 597 - 608
  • [38] The Quantum Sine-Gordon Model in Perturbative AQFT
    Bahns, Dorothea
    Rejzner, Kasia
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2018, 357 (01) : 421 - 446
  • [39] The two-boundary sine-Gordon model
    Caux, JS
    Saleur, H
    Siano, E
    NUCLEAR PHYSICS B, 2003, 672 (03) : 411 - 461
  • [40] Effective potential for the massive sine-Gordon model
    Nagy, S.
    Polonyi, J.
    Sailer, K.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2006, 39 (25): : 8105 - 8117