The Dynamical Sine-Gordon Model

被引:0
|
作者
Martin Hairer
Hao Shen
机构
[1] University of Warwick,
来源
关键词
Heat Kernel; Admissible Graph; Parabolic Scaling; Piecewise Linear Path; Multiplicative Gaussian Chaos;
D O I
暂无
中图分类号
学科分类号
摘要
We introduce the dynamical sine-Gordon equation in two space dimensions with parameter β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\beta}$$\end{document}, which is the natural dynamic associated to the usual quantum sine-Gordon model. It is shown that when β2∈(0,16π3)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\beta^{2} \in (0, \frac{16\pi}{3})}$$\end{document} the Wick renormalised equation is well-posed. In the regime β2∈(0,4π)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\beta^{2} \in (0, 4\pi)}$$\end{document}, the Da Prato–Debussche method [J Funct Anal 196(1):180–210, 2002; Ann Probab 31(4):1900–1916, 2003] applies, while for β2∈[4π,16π3)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\beta^{2} \in [4\pi, \frac{16\pi}{3})}$$\end{document}, the solution theory is provided via the theory of regularity structures [Hairer, Invent Math 198(2):269–504, 2014]. We also show that this model arises naturally from a class of 2+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${2 + 1}$$\end{document} -dimensional equilibrium interface fluctuation models with periodic nonlinearities. The main mathematical difficulty arises in the construction of the model for the associated regularity structure where the role of the noise is played by a non-Gaussian random distribution similar to the complex multiplicative Gaussian chaos recently analysed in Lacoin et al. [Commun Math Phys 337(2):569–632, 2015].
引用
收藏
页码:933 / 989
页数:56
相关论文
共 50 条
  • [1] The Dynamical Sine-Gordon Model
    Hairer, Martin
    Shen, Hao
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2016, 341 (03) : 933 - 989
  • [2] Invariant Gibbs dynamics for the dynamical sine-Gordon model
    Oh, Tadahiro
    Robert, Tristan
    Sosoe, Philippe
    Wang, Yuzhao
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2021, 151 (05) : 1450 - 1466
  • [3] Lattice sine-Gordon model
    Flamino, James
    Giedt, Joel
    PHYSICAL REVIEW D, 2020, 101 (07)
  • [4] Chiral sine-Gordon model
    Yanagisawa, Takashi
    EPL, 2016, 113 (04)
  • [5] Noncommutative sine-Gordon model
    Lechtenfeld, O
    FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS, 2005, 53 (5-6): : 500 - 505
  • [6] A DISCRETE SINE-GORDON MODEL
    DING, GH
    XU, BW
    ZHANG, YM
    PHYSICS LETTERS B, 1993, 317 (1-2) : 107 - 111
  • [7] On a Parabolic Sine-Gordon Model
    Cheng, Xinyu
    Li, Dong
    Quan, Chaoyu
    Yang, Wen
    NUMERICAL MATHEMATICS-THEORY METHODS AND APPLICATIONS, 2021, 14 (04): : 1068 - 1084
  • [8] Noncommutative sine-Gordon model
    Lechtenfeld, O
    CZECHOSLOVAK JOURNAL OF PHYSICS, 2004, 54 (11) : 1351 - 1357
  • [9] THE LATTICE SINE-GORDON MODEL
    IZERGIN, AG
    KOREPIN, VE
    VESTNIK LENINGRADSKOGO UNIVERSITETA SERIYA FIZIKA KHIMIYA, 1981, (04): : 84 - 87
  • [10] The local sine-Gordon model
    Xu, BW
    Zhang, YM
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1996, 29 (22): : 7349 - 7352