Monte Carlo study of the neutron ambient dose equivalent at the heavy ion medical machine in Wuwei

被引:0
|
作者
Sheng-Cong Huang
Hui Zhang
Kai Bai
Ying Luo
Hai-Jun Mao
Zhong-Ying Dai
机构
[1] University of Chinese Academy of Sciences,Institute of Modern Physics
[2] Chinese Academy of Sciences,School of Nuclear Science and Technology
[3] Lanzhou University,undefined
来源
关键词
Carbon-ion radiotherapy; Passive beam delivery; Secondary neutrons; Monte Carlo method;
D O I
暂无
中图分类号
学科分类号
摘要
The use of carbon-ion radiotherapy (CIRT) is gradually increasing. Owing to the generation of high-energy secondary neutrons during CIRT, its use presents new challenges in radiation protection. Thus, secondary neutron dose distributions must be explored and evaluated under clinical scenarios based on different treatment configurations. However, neutron dose and energy spectrum measurements are often difficult. This can be primarily attributed to the inherent limitations of most neutron detectors, such as their unsuitability for spectral measurements and inaccurate responses to neutrons with energies above 20 MeV\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{MeV}$$\end{document}. Numerical calculation methods based on probabilistic statistical theory are fast and convenient for neutron dose evaluation. In this study, external secondary neutron doses at the heavy ion medical machine in Wuwei, which is equipped with a passive beam delivery system, were calculated using the Monte Carlo method. The dependence of neutron doses on various treatment parameters (incident carbon-ion beam energy, spatial location, field size, and spread-out Bragg peak (SOBP) width) was investigated. Furthermore, the feasibility of applying an analytical model to predict the ambient dose equivalent was verified. For the combination involving an energy of 400 MeV/u\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{MeV}/\mathrm{u}$$\end{document} and SOBP width of 6 cm, the ambient dose equivalent per therapeutic dose (H/D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H/D$$\end{document}) at the isocenter was 79.87 mSv/Gy.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{mSv}/\mathrm{Gy}.$$\end{document} The H/D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H/D$$\end{document} value decreased rapidly with increasing spatial distance and slightly with increasing aperture size and SOBP width. The H/D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H/D$$\end{document} values derived from the Monte Carlo simulations were in good agreement with the results reported in the literature. The analytical model could be used to quickly predict the H/D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H/D$$\end{document} value along the incidence direction of the beam with an error of less than 20%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\%$$\end{document}. Thus, our study contributes to the understanding of the relationship between neutron radiation and treatment configuration parameters, which establishes a basis for predicting non-therapeutic radiation doses in CIRT.
引用
收藏
相关论文
共 50 条
  • [31] EVALUATION OF NEUTRON AMBIENT DOSE EQUIVALENT IN CARBON-ION RADIOTHERAPY WITH ENERGY SCANNING
    Matsumoto, Shinnosuke
    Yonai, Shunsuke
    [J]. RADIATION PROTECTION DOSIMETRY, 2020, 191 (03) : 310 - 318
  • [32] The Design of an Ambient Neutron Dose-Equivalent Meter
    Xia Wenming
    Jia Mingchun
    Guo Zhirong
    [J]. JOURNAL OF ENGINEERING FOR GAS TURBINES AND POWER-TRANSACTIONS OF THE ASME, 2011, 133 (08): : 84501 - 1
  • [33] A Monte Carlo based analytic model of the in-room neutron ambient dose equivalent for a Mevion gantry-mounted passively scattered proton system
    Baradaran-Ghahfarokhi, Milad
    Reynoso, Francisco
    Darafsheh, Arash
    Sun, Baozhou
    Prusator, Michael T.
    Mutic, Sasa
    Zhao, Tianyu
    [J]. JOURNAL OF RADIOLOGICAL PROTECTION, 2020, 40 (04) : 980 - 996
  • [34] Monte Carlo simulation of the neutron spectral fluence and dose equivalent for use in shielding a proton therapy vault
    Zheng, Yuanshui
    Newhauser, Wayne
    Klein, Eric
    Low, Daniel
    [J]. PHYSICS IN MEDICINE AND BIOLOGY, 2009, 54 (22): : 6943 - 6957
  • [35] Monte Carlo simulation of neutron dose equivalent by photoneutron production inside the primary barriers of a radiotherapy vault
    Choi, Chang Heon
    Park, So-Yeon
    Park, Jong Min
    Chun, Minsoo
    Kim, Jung-in
    [J]. PHYSICA MEDICA-EUROPEAN JOURNAL OF MEDICAL PHYSICS, 2018, 48 : 1 - 5
  • [36] Monte Carlo simulations for heavy ion dosimetry
    Filipenko, O
    Jäkel, O
    Andreo, P
    Sobolevsky, N
    Hartmann, G
    [J]. RADIOTHERAPY AND ONCOLOGY, 2004, 73 : S87 - S87
  • [37] Analysis of the relationship between ambient dose, ambient dose equivalent and effective dose in operational neutron spectra
    Endo, Akira
    [J]. RADIATION PROTECTION DOSIMETRY, 2024, 200 (13) : 1266 - 1273
  • [38] Biological dose calculation with Monte Carlo physics simulation for heavy-ion radiotherapy
    Kase, Yuki
    Kanematsu, Nobuyuki
    Kanai, Tatsuaki
    Matsufuji, Naruhiro
    [J]. PHYSICS IN MEDICINE AND BIOLOGY, 2006, 51 (24): : N467 - N475
  • [39] Neutron Ambient Dose From Proton Irradiation of ICRU Tissue Calculated Via Monte Carlo Simulation
    Gearhardt, A.
    Chen, Y.
    Ahmad, S.
    Newpower, M.
    [J]. MEDICAL PHYSICS, 2022, 49 (06) : E858 - E859
  • [40] FAST-NEUTRON DOSE EQUIVALENT RATES IN HEAVY-ION TARGET AREAS
    FULMER, CB
    BUTLER, HM
    OHNESORGE, WF
    MOSKO, SW
    [J]. IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 1979, 26 (02) : 2216 - 2218