Stability of the Maxwell–Stefan System in the Diffusion Asymptotics of the Boltzmann Multi-species Equation

被引:0
|
作者
Andrea Bondesan
Marc Briant
机构
[1] Université d’Orléans,Institut Denis Poisson, UMR CNRS 7013
[2] Université de Paris,Laboratoire MAP5, UMR CNRS 8145
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We investigate the diffusion asymptotics of the Boltzmann equation for gaseous mixtures, in the perturbative regime around a local Maxwellian vector whose fluid quantities solve a flux-incompressible Maxwell–Stefan system. Our framework is the torus and we consider hard-potential collision kernels with angular cutoff. As opposed to existing results about hydrodynamic limits in the mono-species case, the local Maxwellian we study here is not a local equilibrium of the mixture due to cross-interactions. By means of a hypocoercive formalism and introducing a suitable modified Sobolev norm, we build a Cauchy theory which is uniform with respect to the Knudsen number ε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon $$\end{document}. In this way, we shall prove that the Maxwell–Stefan system is stable for the Boltzmann multi-species equation, ensuring a rigorous derivation in the vanishing limit ε→0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon \rightarrow 0$$\end{document}.
引用
收藏
页码:381 / 440
页数:59
相关论文
共 50 条