Stability of the Maxwell–Stefan System in the Diffusion Asymptotics of the Boltzmann Multi-species Equation

被引:0
|
作者
Andrea Bondesan
Marc Briant
机构
[1] Université d’Orléans,Institut Denis Poisson, UMR CNRS 7013
[2] Université de Paris,Laboratoire MAP5, UMR CNRS 8145
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We investigate the diffusion asymptotics of the Boltzmann equation for gaseous mixtures, in the perturbative regime around a local Maxwellian vector whose fluid quantities solve a flux-incompressible Maxwell–Stefan system. Our framework is the torus and we consider hard-potential collision kernels with angular cutoff. As opposed to existing results about hydrodynamic limits in the mono-species case, the local Maxwellian we study here is not a local equilibrium of the mixture due to cross-interactions. By means of a hypocoercive formalism and introducing a suitable modified Sobolev norm, we build a Cauchy theory which is uniform with respect to the Knudsen number ε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon $$\end{document}. In this way, we shall prove that the Maxwell–Stefan system is stable for the Boltzmann multi-species equation, ensuring a rigorous derivation in the vanishing limit ε→0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon \rightarrow 0$$\end{document}.
引用
收藏
页码:381 / 440
页数:59
相关论文
共 50 条
  • [21] On the Maxwell-Stefan Equations for Multi-component Diffusion
    Verros, George D.
    Giovannopoulos, Fotios
    COMPUTATIONAL METHODS IN SCIENCE AND ENGINEERING, VOL 2: ADVANCES IN COMPUTATIONAL SCIENCE, 2009, 1148 : 262 - +
  • [22] MIXED HIGH FIELD AND DIFFUSION ASYMPTOTICS FOR THE FERMIONIC BOLTZMANN EQUATION
    Ben Abdallah, Naoufel
    Chaker, Hedia
    KINETIC AND RELATED MODELS, 2009, 2 (03) : 403 - 424
  • [23] On multi-species diffusion with size exclusion
    Hopf, Katharina
    Burger, Martin
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2022, 224
  • [24] Multi-species Neutron Transport Equation
    Cox, Alexander M. G.
    Harris, Simon C.
    Horton, Emma L.
    Kyprianou, Andreas E.
    JOURNAL OF STATISTICAL PHYSICS, 2019, 176 (02) : 425 - 455
  • [25] Multi-species Neutron Transport Equation
    Alexander M. G. Cox
    Simon C. Harris
    Emma L. Horton
    Andreas E. Kyprianou
    Journal of Statistical Physics, 2019, 176 : 425 - 455
  • [26] On the modified Stefan-Maxwell equation for isothermal multicomponent gaseous diffusion
    Runstedtler, A.
    CHEMICAL ENGINEERING SCIENCE, 2006, 61 (15) : 5021 - 5029
  • [27] Numerical simulation of multi-species diffusion
    Truc, O
    Ollivier, JP
    Nilsson, LO
    MATERIALS AND STRUCTURES, 2000, 33 (233) : 566 - 573
  • [28] AMBIPOLAR DIFFUSION IN A MULTI-SPECIES MEDIUM
    ROSENAU, P
    TURKEL, E
    PHYSICA SCRIPTA, 1985, 31 (03): : 207 - 209
  • [29] Numerical simulation of multi-species diffusion
    O. Truc
    J. -P. Ollivier
    L. O. Nilsson
    Materials and Structures, 2000, 33 : 566 - 573
  • [30] Maxwell-Stefan-theory-based lattice Boltzmann model for diffusion in multicomponent mixtures
    Chai, Zhenhua
    Guo, Xiuya
    Wang, Lei
    Shi, Baochang
    PHYSICAL REVIEW E, 2019, 99 (02)