Stability of the Maxwell–Stefan System in the Diffusion Asymptotics of the Boltzmann Multi-species Equation

被引:0
|
作者
Andrea Bondesan
Marc Briant
机构
[1] Université d’Orléans,Institut Denis Poisson, UMR CNRS 7013
[2] Université de Paris,Laboratoire MAP5, UMR CNRS 8145
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We investigate the diffusion asymptotics of the Boltzmann equation for gaseous mixtures, in the perturbative regime around a local Maxwellian vector whose fluid quantities solve a flux-incompressible Maxwell–Stefan system. Our framework is the torus and we consider hard-potential collision kernels with angular cutoff. As opposed to existing results about hydrodynamic limits in the mono-species case, the local Maxwellian we study here is not a local equilibrium of the mixture due to cross-interactions. By means of a hypocoercive formalism and introducing a suitable modified Sobolev norm, we build a Cauchy theory which is uniform with respect to the Knudsen number ε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon $$\end{document}. In this way, we shall prove that the Maxwell–Stefan system is stable for the Boltzmann multi-species equation, ensuring a rigorous derivation in the vanishing limit ε→0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon \rightarrow 0$$\end{document}.
引用
收藏
页码:381 / 440
页数:59
相关论文
共 50 条
  • [11] On the multi-species Boltzmann equation with uncertainty and its stochastic Galerkin approximation*
    Daus, Esther S.
    Jin, Shi
    Liu, Liu
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS, 2021, 55 (04) : 1323 - 1345
  • [12] A discontinuous Galerkin fast spectral method for the multi-species Boltzmann equation
    Jaiswal, Shashank
    Alexeenko, Alina A.
    Hu, Jingwei
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2019, 352 : 56 - 84
  • [13] Homogenization and diffusion asymptotics of the linear Boltzmann equation
    Goudon, T
    Mellet, A
    ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2003, 9 : 371 - 398
  • [14] Global Stability of Equilibrium of Multi-species Model with Cross Diffusion
    Anguelov, R.
    Tenkam, H. M. D.
    APPLICATION OF MATHEMATICS IN TECHNICAL AND NATURAL SCIENCES (AMITANS'15), 2015, 1684
  • [15] EFFECTS OF DIFFUSION ON STABILITY OF EQUILIBRIUM IN MULTI-SPECIES ECOLOGICAL SYSTEMS
    ROSEN, G
    BULLETIN OF MATHEMATICAL BIOLOGY, 1977, 39 (03) : 373 - 383
  • [16] Multi-Species Diffusion in CdTe
    Grill, R.
    Belas, E.
    Bugar, M.
    Hoschl, P.
    Nahlovskyy, B.
    Fochuk, P.
    Panchuk, O.
    Bolotnikov, A. E.
    James, R. B.
    IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2009, 56 (04) : 1763 - 1767
  • [17] THERMAL DIFFUSION IN POLYATOMIC GASES - A GENERALIZED STEFAN-MAXWELL DIFFUSION EQUATION
    MONCHICK, L
    MUNN, RJ
    MASON, EA
    JOURNAL OF CHEMICAL PHYSICS, 1966, 45 (08): : 3051 - &
  • [18] Asymptotic stability of the Boltzmann equation with Maxwell boundary conditions
    Briant, Marc
    Guo, Yan
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 261 (12) : 7000 - 7079
  • [19] On the relaxation of the Maxwell-Stefan system to linear diffusion
    Salvarani, Francesco
    Soares, Ana Jacinta
    APPLIED MATHEMATICS LETTERS, 2018, 85 : 15 - 21
  • [20] Maxwell-Stefan diffusion asymptotics for gas mixtures in non-isothermal setting
    Hutridurga, Harsha
    Salvarani, Francesco
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2017, 159 : 285 - 297