Stability of the Maxwell–Stefan System in the Diffusion Asymptotics of the Boltzmann Multi-species Equation

被引:0
|
作者
Andrea Bondesan
Marc Briant
机构
[1] Université d’Orléans,Institut Denis Poisson, UMR CNRS 7013
[2] Université de Paris,Laboratoire MAP5, UMR CNRS 8145
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We investigate the diffusion asymptotics of the Boltzmann equation for gaseous mixtures, in the perturbative regime around a local Maxwellian vector whose fluid quantities solve a flux-incompressible Maxwell–Stefan system. Our framework is the torus and we consider hard-potential collision kernels with angular cutoff. As opposed to existing results about hydrodynamic limits in the mono-species case, the local Maxwellian we study here is not a local equilibrium of the mixture due to cross-interactions. By means of a hypocoercive formalism and introducing a suitable modified Sobolev norm, we build a Cauchy theory which is uniform with respect to the Knudsen number ε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon $$\end{document}. In this way, we shall prove that the Maxwell–Stefan system is stable for the Boltzmann multi-species equation, ensuring a rigorous derivation in the vanishing limit ε→0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon \rightarrow 0$$\end{document}.
引用
收藏
页码:381 / 440
页数:59
相关论文
共 50 条
  • [1] Stability of the Maxwell-Stefan System in the Diffusion Asymptotics of the Boltzmann Multi-species Equation
    Bondesan, Andrea
    Briant, Marc
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2021, 382 (01) : 381 - 440
  • [2] STABILITY OF GLOBAL EQUILIBRIUM FOR THE MULTI-SPECIES BOLTZMANN EQUATION IN L∞ SETTINGS
    Briant, Marc
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2016, 36 (12) : 6669 - 6688
  • [3] Mixed finite element methods for addressing multi-species diffusion using the Maxwell-Stefan equations
    McLeod, Michael
    Bourgault, Yves
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2014, 279 : 515 - 535
  • [4] Hermite spectral method for multi-species Boltzmann equation
    Li, Ruo
    Lu, Yixiao
    Wang, Yanli
    Xu, Haoxuan
    JOURNAL OF COMPUTATIONAL PHYSICS, 2022, 471
  • [5] Hermite spectral method for multi-species Boltzmann equation
    Li, Ruo
    Lu, Yixiao
    Wang, Yanli
    Xu, Haoxuan
    Journal of Computational Physics, 2022, 471
  • [6] An approach combining the lattice Boltzmann method and Maxwell-Stefan equation for modeling multi-component diffusion
    Huang, Ju'an
    Li, Zhiyuan
    Li, Na
    Bao, Cheng
    Feng, Daili
    Jiang, Zeyi
    Zhang, Xinxin
    PHYSICS OF FLUIDS, 2021, 33 (08)
  • [7] Rigorous derivation of the Fick cross-diffusion system from the multi-species Boltzmann equation in the diffusive scaling
    Briant, Marc
    Grec, Berenice
    ASYMPTOTIC ANALYSIS, 2023, 135 (1-2) : 55 - 80
  • [8] The Boltzmann Equation for a Multi-species Mixture Close to Global Equilibrium
    Marc Briant
    Esther S. Daus
    Archive for Rational Mechanics and Analysis, 2016, 222 : 1367 - 1443
  • [9] The Boltzmann Equation for a Multi-species Mixture Close to Global Equilibrium
    Briant, Marc
    Daus, Esther S.
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2016, 222 (03) : 1367 - 1443
  • [10] STABILITY OF THE SPECTRAL GAP FOR THE BOLTZMANN MULTI-SPECIES OPERATOR LINEARIZED AROUND NON-EQUILIBRIUM MAXWELL DISTRIBUTIONS
    Bondesan, Andrea
    Boudin, Laurent
    Briant, Marc
    Grec, Berenice
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2020, 19 (05) : 2549 - 2573