Limiting Curves for the Dyadic Odometer

被引:0
|
作者
Minabutdinov A.R. [1 ]
机构
[1] National Research University Higher School of Economics, Department of Mathematics, and St. Petersburg Department of Steklov Institute of Mathematics, St. Petersburg
关键词
D O I
10.1007/s10958-020-04831-z
中图分类号
学科分类号
摘要
A limiting curve of a stationary process in discrete time was defined by É. Janvresse, T. de la Rue, and Y. Velenik as the uniform limit of the functionst↦(S(tln)−tS(ln))/Rn∈C([01]), where S stands for the piecewise linear extension of the partial sum, Rn:= sup |S(tln) − tS(ln))|, and (ln) = (ln(ω)) is a suitable sequence of integers. We determine the limiting curves for the stationary sequence (f ∘ Tn(ω)) where T is the dyadic odometer on {0, 1}ℕ and f((ωi))=∑i≥0ωiqi+1 for 1/2 < |q| < 1. Namely, we prove that for a.e. ω there exists a sequence (ln(ω)) such that the limiting curve exists and is equal to (−1) times the Tagaki–Landsberg function with parameter 1/2q. The result can be obtained as a corollary of a generalization of the Trollope–Delange formula to the q-weighted case. © 2020, Springer Science+Business Media, LLC, part of Springer Nature.
引用
收藏
页码:688 / 695
页数:7
相关论文
共 50 条
  • [1] On a Dyadic Parametrization of Curves
    J. Milne Anderson
    F. David Lesley
    Vladimir I. Rotar
    Computational Methods and Function Theory, 2004, 3 (1) : 105 - 115
  • [2] Dyadic torsion of elliptic curves
    Yelton J.
    European Journal of Mathematics, 2015, 1 (4) : 704 - 716
  • [3] TANGENTS TO CURVES AND A DYADIC PARAMETERIZATION
    ANDERSON, JM
    LESLEY, FD
    MICHIGAN MATHEMATICAL JOURNAL, 1994, 41 (02) : 269 - 284
  • [4] On some dyadic properties of curves
    Anderson, JM
    Grifkin, ME
    Lesley, FD
    QUARTERLY JOURNAL OF MATHEMATICS, 2001, 52 : 403 - 413
  • [5] Limiting compression curves
    Sridharan, A
    Prakash, K
    GEOTECHNICAL TESTING JOURNAL, 2001, 24 (03): : 330 - 333
  • [6] ON LIMITING RATIONAL CURVES
    WU, XA
    MANUSCRIPTA MATHEMATICA, 1994, 85 (3-4) : 243 - 253
  • [7] Dyadic Model of Adaptation to Life-Limiting Illness
    Ahluwalia, Sangeeta
    Reddy, Neha K.
    Johnson, Rebecca
    Emanuel, Linda
    Knight, Sara J.
    JOURNAL OF PALLIATIVE MEDICINE, 2020, 23 (09) : 1177 - 1183
  • [8] Normal and Limiting Points on the Boiling Curves
    Vitvitskii, A. I.
    RUSSIAN JOURNAL OF APPLIED CHEMISTRY, 2010, 83 (11) : 2049 - 2051
  • [9] Normal and limiting points on the boiling curves
    A. I. Vitvitskii
    Russian Journal of Applied Chemistry, 2010, 83 : 2049 - 2051
  • [10] Limiting curves in an axially symmetric galaxy
    Navarro, Juan F.
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (01) : 993 - 1002