On a Dyadic Parametrization of Curves

被引:0
|
作者
J. Milne Anderson
F. David Lesley
Vladimir I. Rotar
机构
[1] University College London,Department of Mathematics
[2] San Diego State University,Department of Mathematics and Statistics
[3] Russian Academy of Sciences,Central Economics and Mathematics Institute
关键词
Conformal mapping; boundary properties; non-rectifiable curves; Kolmogorov’s Theorem; one-sided estimates Lyapunov ratio condition.; 30C35; 60C05;
D O I
10.1007/BF03321028
中图分类号
学科分类号
摘要
A “dyadic parametrization” of a (presumably non-rectifiable) curve in the complex plane is introduced, along with the notions of a dyadic tangent and a dyadic twist point. The parametrization of a curve leads to a tree of angles, to which we apply some theorems on probability. Using one sided inequalities of Paley Zygmund type, we find conditions for the set of points with dyadic tangents and the set of twist pionts to have Hausdorff dimension one.
引用
收藏
页码:105 / 115
页数:10
相关论文
共 50 条
  • [1] On parametrization of interpolating curves
    Juhasz, Imre
    Hoffmann, Miklos
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2008, 216 (02) : 413 - 424
  • [2] SYMBOLIC PARAMETRIZATION OF CURVES
    SENDRA, JR
    WINKLER, F
    [J]. JOURNAL OF SYMBOLIC COMPUTATION, 1991, 12 (06) : 607 - 631
  • [3] Parametrization of ε-Rational Curves
    Perez-Diaz, Sonia
    Rafael Sendra, J.
    Rueda, Sonia L.
    Sendra, Juana
    [J]. SNC'09: PROCEEDINGS OF THE 2009 INTERNATIONAL WORKSHOP ON SYMBOLIC-NUMERIC COMPUTATION, 2009, : 199 - 200
  • [4] SLE CURVES AND NATURAL PARAMETRIZATION
    Lawler, Gregory F.
    Zhou, Wang
    [J]. ANNALS OF PROBABILITY, 2013, 41 (3A): : 1556 - 1584
  • [5] ON THE CHOICE OF PENCILS IN THE PARAMETRIZATION OF CURVES
    SCHICHO, J
    [J]. JOURNAL OF SYMBOLIC COMPUTATION, 1992, 14 (06) : 557 - 576
  • [6] Limiting Curves for the Dyadic Odometer
    Minabutdinov A.R.
    [J]. Journal of Mathematical Sciences, 2020, 247 (5) : 688 - 695
  • [7] Dyadic torsion of elliptic curves
    Yelton J.
    [J]. European Journal of Mathematics, 2015, 1 (4) : 704 - 716
  • [8] TANGENTS TO CURVES AND A DYADIC PARAMETERIZATION
    ANDERSON, JM
    LESLEY, FD
    [J]. MICHIGAN MATHEMATICAL JOURNAL, 1994, 41 (02) : 269 - 284
  • [9] On some dyadic properties of curves
    Anderson, JM
    Grifkin, ME
    Lesley, FD
    [J]. QUARTERLY JOURNAL OF MATHEMATICS, 2001, 52 : 403 - 413
  • [10] Rational parametrization of conchoids to algebraic curves
    J. Sendra
    J. R. Sendra
    [J]. Applicable Algebra in Engineering, Communication and Computing, 2010, 21 : 285 - 308