Limiting Curves for the Dyadic Odometer

被引:0
|
作者
Minabutdinov A.R. [1 ]
机构
[1] National Research University Higher School of Economics, Department of Mathematics, and St. Petersburg Department of Steklov Institute of Mathematics, St. Petersburg
关键词
D O I
10.1007/s10958-020-04831-z
中图分类号
学科分类号
摘要
A limiting curve of a stationary process in discrete time was defined by É. Janvresse, T. de la Rue, and Y. Velenik as the uniform limit of the functionst↦(S(tln)−tS(ln))/Rn∈C([01]), where S stands for the piecewise linear extension of the partial sum, Rn:= sup |S(tln) − tS(ln))|, and (ln) = (ln(ω)) is a suitable sequence of integers. We determine the limiting curves for the stationary sequence (f ∘ Tn(ω)) where T is the dyadic odometer on {0, 1}ℕ and f((ωi))=∑i≥0ωiqi+1 for 1/2 < |q| < 1. Namely, we prove that for a.e. ω there exists a sequence (ln(ω)) such that the limiting curve exists and is equal to (−1) times the Tagaki–Landsberg function with parameter 1/2q. The result can be obtained as a corollary of a generalization of the Trollope–Delange formula to the q-weighted case. © 2020, Springer Science+Business Media, LLC, part of Springer Nature.
引用
收藏
页码:688 / 695
页数:7
相关论文
共 50 条
  • [21] Toward a boot odometer
    Vernon, Richard C.
    Irvine, Cynthia E.
    Levin, Timothy E.
    2006 IEEE INFORMATION ASSURANCE WORKSHOP, 2006, : 19 - +
  • [22] Odometer Navigation Systems
    Ablesimov, Oleksandr
    2014 IEEE 3RD INTERNATIONAL CONFERENCE ON METHODS AND SYSTEMS OF NAVIGATION AND MOTION CONTROL (MSNMC), 2014, : 86 - 87
  • [23] Odometer Based Systems
    Foreman, Matthew
    Weiss, Benjamin
    ISRAEL JOURNAL OF MATHEMATICS, 2022, 251 (01) : 327 - 364
  • [24] Analyticity of the dispersion curves and limiting absorption principle for Maxwell operator
    Soccorsi, E
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1999, 329 (01): : 91 - 96
  • [25] Asymptotic closeness to limiting shapes for expanding embedded plane curves
    Tsai, DH
    INVENTIONES MATHEMATICAE, 2005, 162 (03) : 473 - 492
  • [26] LIMITING DISTRIBUTIONS OF CURVES UNDER GEODESIC FLOW ON HYPERBOLIC MANIFOLDS
    Shah, Nimish A.
    DUKE MATHEMATICAL JOURNAL, 2009, 148 (02) : 251 - 279
  • [27] LIMITING DEEPDRAWING CURVES - MICROSTRUCTURE ANALYSIS OF INFLUENCE OF DEFORMATION TRAJECTORIES
    BAUDELET, B
    DEGUEN, M
    FELGERES, L
    PARNIERE, P
    RONDEOUSTAU, F
    SANZ, G
    MEMOIRES SCIENTIFIQUES DE LA REVUE DE METALLURGIE, 1978, 75 (07): : 409 - 422
  • [28] AN ODOMETER FOR UNDERWATER TRANSECTS
    MOUSSEAU, TA
    HYDROBIOLOGIA, 1989, 184 (03) : 191 - 192
  • [29] Odometer Based Systems
    Matthew Foreman
    Benjamin Weiss
    Israel Journal of Mathematics, 2022, 251 : 327 - 364
  • [30] Asymptotic closeness to limiting shapes for expanding embedded plane curves
    Dong-Ho Tsai
    Inventiones mathematicae, 2005, 162 : 473 - 492