Limiting Curves for the Dyadic Odometer

被引:0
|
作者
Minabutdinov A.R. [1 ]
机构
[1] National Research University Higher School of Economics, Department of Mathematics, and St. Petersburg Department of Steklov Institute of Mathematics, St. Petersburg
关键词
D O I
10.1007/s10958-020-04831-z
中图分类号
学科分类号
摘要
A limiting curve of a stationary process in discrete time was defined by É. Janvresse, T. de la Rue, and Y. Velenik as the uniform limit of the functionst↦(S(tln)−tS(ln))/Rn∈C([01]), where S stands for the piecewise linear extension of the partial sum, Rn:= sup |S(tln) − tS(ln))|, and (ln) = (ln(ω)) is a suitable sequence of integers. We determine the limiting curves for the stationary sequence (f ∘ Tn(ω)) where T is the dyadic odometer on {0, 1}ℕ and f((ωi))=∑i≥0ωiqi+1 for 1/2 < |q| < 1. Namely, we prove that for a.e. ω there exists a sequence (ln(ω)) such that the limiting curve exists and is equal to (−1) times the Tagaki–Landsberg function with parameter 1/2q. The result can be obtained as a corollary of a generalization of the Trollope–Delange formula to the q-weighted case. © 2020, Springer Science+Business Media, LLC, part of Springer Nature.
引用
收藏
页码:688 / 695
页数:7
相关论文
共 50 条
  • [31] DEEP DRAWABILITY OF TINPLATE - LIMITING FORMING CURVES AND INDUSTRIAL APPLICATION
    DEKAINLIS, G
    ENTRINGER, M
    CALAS, J
    REVUE DE METALLURGIE-CAHIERS D INFORMATIONS TECHNIQUES, 1976, 73 (11): : 753 - 760
  • [32] Visual odometer for pedestrian navigation
    Jirawimut, R
    Prakoonwit, S
    Cecelja, F
    Balachandran, W
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2003, 52 (04) : 1166 - 1173
  • [34] The Johnson System of Frequency Curves-Historical, Graphical, and Limiting Perspectives
    van Dorp, Johan Rene
    Jones, M. C.
    AMERICAN STATISTICIAN, 2020, 74 (01): : 37 - 52
  • [35] Visual odometer for pedestrian navigation
    Jirawimut, R
    Prakoonwit, S
    Cecelja, F
    Balachandran, W
    IMTC 2002: PROCEEDINGS OF THE 19TH IEEE INSTRUMENTATION AND MEASUREMENT TECHNOLOGY CONFERENCE, VOLS 1 & 2, 2002, : 43 - 48
  • [36] Wold decomposition on odometer semigroups
    Li, Boyu
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2022, 152 (03) : 738 - 755
  • [37] Odometer actions of the Heisenberg group
    Alexandre I. Danilenko
    Mariusz Lemańczyk
    Journal d'Analyse Mathématique, 2016, 128 : 107 - 157
  • [38] An Interactive Information Odometer and Applications
    Braverman, Mark
    Weinstein, Omri
    STOC'15: PROCEEDINGS OF THE 2015 ACM SYMPOSIUM ON THEORY OF COMPUTING, 2015, : 341 - 350
  • [39] Odometer action on Riesz product
    Yoshida, M
    JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES A-PURE MATHEMATICS AND STATISTICS, 1996, 61 : 143 - 149
  • [40] Deep Drawability of Tinplate, Limiting Formability Curves and Industrial Applications.
    de Kainlis, G.
    Entringer, M.
    Calas, J.
    Revue de Metallurgie. Cahiers D'Informations Techniques, 1976, 73 (11): : 753 - 760