High Order Algorithm for the Time-Tempered Fractional Feynman–Kac Equation

被引:0
|
作者
Minghua Chen
Weihua Deng
机构
[1] Lanzhou University,School of Mathematics and Statistics, Gansu Key Laboratory of Applied Mathematics and Complex Systems
来源
Journal of Scientific Computing | 2018年 / 76卷
关键词
Time-tempered fractional Feynman–Kac equation; Tempered fractional substantial derivative; Stability and convergence; First passage time; 35R11; 65L20;
D O I
暂无
中图分类号
学科分类号
摘要
We provide and analyze the high order algorithms for the model describing the functional distributions of particles performing anomalous motion with power-law jump length and tempered power-law waiting time. The model is derived in Wu et al. (Phys Rev E 93:032151, 2016), being called the time-tempered fractional Feynman–Kac equation named after Richard Feynman and Mark Kac who first considered the model describing the functional distribution of normal motion. The key step of designing the algorithms is to discretize the time tempered fractional substantial derivative, being defined as SDtγ,λ~G(x,p,t)=Dtγ,λ~G(x,p,t)-λγG(x,p,t)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} {^S\!}D_t^{\gamma ,\widetilde{\lambda }} G(x,p,t)\!=\!D_t^{\gamma ,\widetilde{\lambda }} G(x,p,t)\!-\!\lambda ^\gamma G(x,p,t) \end{aligned}$$\end{document}with λ~=λ+pU(x),p=ρ+Jη,J=-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\widetilde{\lambda }=\lambda + pU(x),\, p=\rho +J\eta ,\, J=\sqrt{-1}$$\end{document}, where Dtγ,λ~G(x,p,t)=1Γ(1-γ)∂∂t+λ~∫0tt-z-γe-λ~·(t-z)G(x,p,z)dz,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} D_t^{\gamma ,\widetilde{\lambda }} G(x,p,t) =\frac{1}{\varGamma (1-\gamma )} \left[ \frac{\partial }{\partial t}+\widetilde{\lambda } \right] \int _{0}^t{\left( t-z\right) ^{-\gamma }}e^{-\widetilde{\lambda }\cdot (t-z)}{G(x,p,z)}dz, \end{aligned}$$\end{document}and λ≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda \ge 0$$\end{document}, 0<γ<1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0<\gamma <1$$\end{document}, ρ>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho >0$$\end{document}, and η\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\eta $$\end{document} is a real number. The designed schemes are unconditionally stable and have the global truncation error O(τ2+h2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathscr {O}(\tau ^2+h^2)$$\end{document}, being theoretically proved and numerically verified in complex space. Moreover, some simulations for the distributions of the first passage time are performed, and the second order convergence is also obtained for solving the ‘physical’ equation (without artificial source term).
引用
收藏
页码:867 / 887
页数:20
相关论文
共 50 条
  • [1] High Order Algorithm for the Time-Tempered Fractional Feynman-Kac Equation
    Chen, Minghua
    Deng, Weihua
    JOURNAL OF SCIENTIFIC COMPUTING, 2018, 76 (02) : 867 - 887
  • [2] Numerical schemes of the time tempered fractional Feynman-Kac equation
    Deng, W. H.
    Zhang, Z. J.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2017, 73 (06) : 1063 - 1076
  • [3] TIME DISCRETIZATION OF A TEMPERED FRACTIONAL FEYNMAN-KAC EQUATION WITH MEASURE DATA
    Deng, Weihua
    Li, Buyang
    Qian, Zhi
    Wang, Hong
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2018, 56 (06) : 3249 - 3275
  • [4] Tempered fractional Feynman-Kac equation: Theory and examples
    Wu, Xiaochao
    Deng, Weihua
    Barkai, Eli
    PHYSICAL REVIEW E, 2016, 93 (03)
  • [5] Correction of High-Order BDF Convolution Quadrature for Fractional Feynman-Kac Equation with Levy Flight
    Shi, Jiankang
    Chen, Minghua
    JOURNAL OF SCIENTIFIC COMPUTING, 2020, 85 (02)
  • [6] Correction of High-Order BDF Convolution Quadrature for Fractional Feynman–Kac Equation with Lévy Flight
    Jiankang Shi
    Minghua Chen
    Journal of Scientific Computing, 2020, 85
  • [7] Fractional Feynman-Kac equation for weak ergodicity breaking
    Carmi, Shai
    Barkai, Eli
    PHYSICAL REVIEW E, 2011, 84 (06)
  • [8] Efficient Jacobian Spectral Collocation Method for Spatio-Dependent Temporal Tempered Fractional Feynman-Kac Equation
    Zhao, Tinggang
    Zhao, Lijing
    COMMUNICATIONS ON APPLIED MATHEMATICS AND COMPUTATION, 2024,
  • [9] High-order BDF fully discrete scheme for backward fractional Feynman-Kac equation with nonsmooth data
    Sun, Jing
    Nie, Daxin
    Deng, Weihua
    APPLIED NUMERICAL MATHEMATICS, 2021, 161 : 82 - 100
  • [10] Numerical methods for forward fractional Feynman-Kac equation
    Nie, Daxin
    Sun, Jing
    Deng, Weihua
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2024, 50 (03)