Exceptional set for sums of unlike powers of primes (II)

被引:0
|
作者
Min Zhang
Jinjiang Li
机构
[1] Beijing Information Science and Technology University,School of Applied Science
[2] China University of Mining and Technology,Department of Mathematics
来源
The Ramanujan Journal | 2021年 / 55卷
关键词
Waring–Goldbach problem; Circle method; Exceptional set; 11P05; 11P32; 11P55;
D O I
暂无
中图分类号
学科分类号
摘要
Let N be a sufficiently large integer. In this paper, it is proved that, with at most O(N7/18+ε)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(N^{7/18+\varepsilon })$$\end{document} exceptions, all even positive integers up to N can be represented in the form p12+p22+p33+p43+p54+p64\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p_1^2+p_2^2+p_3^3+p_4^3+p_5^4+p_6^4$$\end{document}, where p1,p2,p3,p4,p5,p6\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p_1,p_2,p_3,p_4,p_5,p_6$$\end{document} are prime numbers, which constitutes an improvement over some previous work.
引用
收藏
页码:131 / 140
页数:9
相关论文
共 50 条
  • [1] Exceptional set for sums of unlike powers of primes (II)
    Zhang, Min
    Li, Jinjiang
    RAMANUJAN JOURNAL, 2021, 55 (01): : 131 - 140
  • [2] The Exceptional Set for Sums of Unlike Powers of Primes
    Zhao, Li Lu
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2014, 30 (11) : 1897 - 1904
  • [3] Exceptional set for sums of unlike powers of primes
    Liu, Y.
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2019, 15 (02) : 339 - 352
  • [4] Exceptional Set for Sums of Unlike Powers of Primes
    Zhang, Min
    Li, Jinjiang
    TAIWANESE JOURNAL OF MATHEMATICS, 2018, 22 (04): : 779 - 811
  • [5] The Exceptional Set for Sums of Unlike Powers of Primes
    Li Lu ZHAO
    Acta Mathematica Sinica(English Series), 2014, 30 (11) : 1897 - 1904
  • [6] The exceptional set for sums of unlike powers of primes
    Li Lu Zhao
    Acta Mathematica Sinica, English Series, 2014, 30 : 1897 - 1904
  • [7] A note on the exceptional set for sums of unlike powers of primes
    Liu, Yuhui
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2024,
  • [8] On the exceptional set for Diophantine inequality with unlike powers of primes
    Huafeng Liu
    Rui Liu
    Lithuanian Mathematical Journal, 2024, 64 : 34 - 52
  • [9] On the exceptional set for Diophantine inequality with unlike powers of primes
    Liu, Huafeng
    Liu, Rui
    LITHUANIAN MATHEMATICAL JOURNAL, 2024, 64 (01) : 34 - 52
  • [10] Slim exceptional set for sums of mixed powers of primes
    Li, Jinjiang
    Zhang, Min
    Zhao, Yuetong
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2021, 131 (02):