Dynamic feature weighting for multi-label classification problems

被引:0
|
作者
Maryam Dialameh
Ali Hamzeh
机构
[1] Shiraz University,Department of Computer Science, School of Electrical and Computer Engineering
来源
关键词
Multi-label classification; Feature weighting; Dynamic weights;
D O I
暂无
中图分类号
学科分类号
摘要
This paper proposes a dynamic feature weighting approach for multi-label classification problems. The choice of dynamic weights plays a vital role in such problems because the assigned weight to each feature might be dependent on the query. To take this dependency into account, we optimize our previously proposed dynamic weighting function through a non-convex formulation, resulting in several interesting properties. Moreover, by minimizing the proposed objective function, the samples with similar label sets get closer to each other while getting far away from the dissimilar ones. In order to learn the parameters of the weighting functions, we propose an iterative gradient descent algorithm that minimizes the traditional leave-one-out error rate. We further embed the learned weighting function into one of the popular multi-label classifiers, namely ML-kNN, and evaluate its performance over a set of benchmark datasets. Moreover, a distributed implementation of the proposed method on Spark is suggested to address the computational complexity on large-scale datasets. Finally, we compare the obtained results with several related state-of-the-art methods. The experimental results illustrate that the proposed method consistently achieves superior performances compared to others.
引用
收藏
页码:283 / 295
页数:12
相关论文
共 50 条
  • [21] Categorizing feature selection methods for multi-label classification
    Rafael B. Pereira
    Alexandre Plastino
    Bianca Zadrozny
    Luiz H. C. Merschmann
    Artificial Intelligence Review, 2018, 49 : 57 - 78
  • [22] Feature Selection in Multi-label classification through MLQPFS
    Soheili, Majid
    Moghadam, Amir-Massoud Eftekhari
    2016 4TH INTERNATIONAL CONFERENCE ON CONTROL, INSTRUMENTATION, AND AUTOMATION (ICCIA), 2016, : 430 - 434
  • [23] Memetic feature selection algorithm for multi-label classification
    Lee, Jaesung
    Kim, Dae-Won
    INFORMATION SCIENCES, 2015, 293 : 80 - 96
  • [24] Multi-label text classification with an ensemble feature space
    Tandon, Kushagri
    Chatterjee, Niladri
    Journal of Intelligent and Fuzzy Systems, 2022, 42 (05): : 4425 - 4436
  • [25] Optimization approach for feature selection in multi-label classification
    Lim, Hyunki
    Lee, Jaesung
    Kim, Dae-Won
    PATTERN RECOGNITION LETTERS, 2017, 89 : 25 - 30
  • [26] Label distribution feature selection for multi-label classification with rough set
    Qian, Wenbin
    Huang, Jintao
    Wang, Yinglong
    Xie, Yonghong
    INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 2021, 128 : 32 - 55
  • [27] Feature distribution-based label correlation in multi-label classification
    Xiaoya Che
    Degang Chen
    Jusheng Mi
    International Journal of Machine Learning and Cybernetics, 2021, 12 : 1705 - 1719
  • [28] Feature distribution-based label correlation in multi-label classification
    Che, Xiaoya
    Chen, Degang
    Mi, Jusheng
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2021, 12 (06) : 1705 - 1719
  • [29] A Multi-label Classification Algorithm Combining Feature Screening and Label Correlation
    Chen, Xinying
    Liang, Xupeng
    Yi, Weiguo
    Song, Xudong
    Wang, Di
    Zhang, Yina
    IAENG International Journal of Computer Science, 2023, 50 (04)
  • [30] Multi-task Joint Feature Selection for Multi-label Classification
    HE Zhifen
    YANG Ming
    LIU Huidong
    Chinese Journal of Electronics, 2015, 24 (02) : 281 - 287