Memetic feature selection algorithm for multi-label classification

被引:125
|
作者
Lee, Jaesung [1 ]
Kim, Dae-Won [1 ]
机构
[1] Chung Ang Univ, Sch Comp Sci & Engn, Seoul 156756, South Korea
基金
新加坡国家研究基金会;
关键词
Multi-label feature selection; Memetic algorithm; Local refinement; TRANSFORMATION;
D O I
10.1016/j.ins.2014.09.020
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The use of multi-label classification, i.e., assigning unseen patterns to multiple categories, has emerged in modern applications. A genetic-algorithm based multi-label feature selection method has been considered useful because it successfully improves the accuracy of multi-label classification. However, genetic algorithms are limited to identify fine-tuned feature subsets that are close to the global optimum, which results in a long runtime. In this paper, we present a memetic feature selection algorithm for multi-label classification that prevents premature convergence and improves the efficiency. The proposed method employs memetic procedures to refine the feature subsets found through a genetic search, resulting in an improvement in multi-label classification. Empirical studies using various tests show that the proposed method outperforms conventional multi-label feature selection methods. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:80 / 96
页数:17
相关论文
共 50 条
  • [1] Feature Selection for Hierarchical Multi-label Classification
    da Silva, Luan V. M.
    Cerri, Ricardo
    [J]. ADVANCES IN INTELLIGENT DATA ANALYSIS XIX, IDA 2021, 2021, 12695 : 196 - 208
  • [2] Feature Selection for Multi-label Classification Problems
    Doquire, Gauthier
    Verleysen, Michel
    [J]. ADVANCES IN COMPUTATIONAL INTELLIGENCE, IWANN 2011, PT I, 2011, 6691 : 9 - 16
  • [3] An efficient Pareto-based feature selection algorithm for multi-label classification
    Hashemi, Amin
    Dowlatshahi, Mohammad Bagher
    Nezamabadi-pour, Hossein
    [J]. INFORMATION SCIENCES, 2021, 581 : 428 - 447
  • [4] Feature selection for multi-label naive Bayes classification
    Zhang, Min-Ling
    Pena, Jose M.
    Robles, Victor
    [J]. INFORMATION SCIENCES, 2009, 179 (19) : 3218 - 3229
  • [5] Feature Selection in Multi-label classification through MLQPFS
    Soheili, Majid
    Moghadam, Amir-Massoud Eftekhari
    [J]. 2016 4TH INTERNATIONAL CONFERENCE ON CONTROL, INSTRUMENTATION, AND AUTOMATION (ICCIA), 2016, : 430 - 434
  • [6] Categorizing feature selection methods for multi-label classification
    Rafael B. Pereira
    Alexandre Plastino
    Bianca Zadrozny
    Luiz H. C. Merschmann
    [J]. Artificial Intelligence Review, 2018, 49 : 57 - 78
  • [7] Optimization approach for feature selection in multi-label classification
    Lim, Hyunki
    Lee, Jaesung
    Kim, Dae-Won
    [J]. PATTERN RECOGNITION LETTERS, 2017, 89 : 25 - 30
  • [8] Categorizing feature selection methods for multi-label classification
    Pereira, Rafael B.
    Plastino, Alexandre
    Zadrozny, Bianca
    Merschmann, Luiz H. C.
    [J]. ARTIFICIAL INTELLIGENCE REVIEW, 2018, 49 (01) : 57 - 78
  • [9] A lazy feature selection method for multi-label classification
    Pereira, Rafael B.
    Plastino, Alexandre
    Zadrozny, Bianca
    Merschmann, Luiz H. C.
    [J]. INTELLIGENT DATA ANALYSIS, 2021, 25 (01) : 21 - 34
  • [10] Label distribution feature selection for multi-label classification with rough set
    Qian, Wenbin
    Huang, Jintao
    Wang, Yinglong
    Xie, Yonghong
    [J]. INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 2021, 128 : 32 - 55