Dynamic feature weighting for multi-label classification problems

被引:0
|
作者
Maryam Dialameh
Ali Hamzeh
机构
[1] Shiraz University,Department of Computer Science, School of Electrical and Computer Engineering
来源
关键词
Multi-label classification; Feature weighting; Dynamic weights;
D O I
暂无
中图分类号
学科分类号
摘要
This paper proposes a dynamic feature weighting approach for multi-label classification problems. The choice of dynamic weights plays a vital role in such problems because the assigned weight to each feature might be dependent on the query. To take this dependency into account, we optimize our previously proposed dynamic weighting function through a non-convex formulation, resulting in several interesting properties. Moreover, by minimizing the proposed objective function, the samples with similar label sets get closer to each other while getting far away from the dissimilar ones. In order to learn the parameters of the weighting functions, we propose an iterative gradient descent algorithm that minimizes the traditional leave-one-out error rate. We further embed the learned weighting function into one of the popular multi-label classifiers, namely ML-kNN, and evaluate its performance over a set of benchmark datasets. Moreover, a distributed implementation of the proposed method on Spark is suggested to address the computational complexity on large-scale datasets. Finally, we compare the obtained results with several related state-of-the-art methods. The experimental results illustrate that the proposed method consistently achieves superior performances compared to others.
引用
收藏
页码:283 / 295
页数:12
相关论文
共 50 条
  • [31] Multi-task Joint Feature Selection for Multi-label Classification
    He Zhifen
    Yang Ming
    Liu Huidong
    CHINESE JOURNAL OF ELECTRONICS, 2015, 24 (02) : 281 - 287
  • [32] Hierarchical Multi-label Classification Problems: An LCS Approach
    Romao, Luiz Melo
    Nievola, Julio Cesar
    Distributed Computing and Artificial Intelligence, 12th International Conference, 2015, 373 : 97 - 104
  • [33] A Classification Approach with a Reject Option for Multi-label Problems
    Pillai, Ignazio
    Fumera, Giorgio
    Roli, Fabio
    IMAGE ANALYSIS AND PROCESSING - ICIAP 2011, PT I, 2011, 6978 : 98 - 107
  • [34] A correlation-based feature weighting filter for multi-label Naive Bayes
    Verma G.
    Sahu T.P.
    International Journal of Information Technology, 2024, 16 (1) : 611 - 619
  • [35] Dynamic ensemble pruning based on multi-label classification
    Markatopoulou, Fotini
    Tsoumakas, Grigorios
    Vlahavas, Ioannis
    NEUROCOMPUTING, 2015, 150 : 501 - 512
  • [36] Feature learning network with transformer for multi-label image classification
    Zhou, Wei
    Dou, Peng
    Su, Tao
    Hu, Haifeng
    Zheng, Zhijie
    PATTERN RECOGNITION, 2023, 136
  • [37] Feature Selection for Multi-label Classification Using Neighborhood Preservation
    Cai, Zhiling
    Zhu, William
    IEEE-CAA JOURNAL OF AUTOMATICA SINICA, 2018, 5 (01) : 320 - 330
  • [38] A many-objective feature selection for multi-label classification
    Dong, Hongbin
    Sun, Jing
    Sun, Xiaohang
    Ding, Rui
    KNOWLEDGE-BASED SYSTEMS, 2020, 208
  • [39] Correlation-enhanced feature learning for multi-label classification
    Zhou, Zhengjuan
    Zheng, Xianju
    Yu, Yue
    Li, Shaolong
    Li, Shiwen
    Zhou, Lingli
    PROCEEDINGS OF 2024 INTERNATIONAL CONFERENCE ON COMPUTER AND MULTIMEDIA TECHNOLOGY, ICCMT 2024, 2024, : 289 - 295
  • [40] Combining instance and feature neighbours for extreme multi-label classification
    Feremans, Len
    Cule, Boris
    Vens, Celine
    Goethals, Bart
    INTERNATIONAL JOURNAL OF DATA SCIENCE AND ANALYTICS, 2020, 10 (03) : 215 - 231