Pieri’s formula for generalized Schur polynomials

被引:0
|
作者
Yasuhide Numata
机构
[1] Hokkaido University,Department of Mathematics
来源
关键词
Pieri formula; Generarized Schur operators; Schur polynomials; Young diagrams; Planar binary trees; Differential posets; Dual graphs; Symmetric functions; Quasi-symmetric polynomials;
D O I
暂无
中图分类号
学科分类号
摘要
Young's lattice, the lattice of all Young diagrams, has the Robinson-Schensted-Knuth correspondence, the correspondence between certain matrices and pairs of semi-standard Young tableaux with the same shape. Fomin introduced generalized Schur operators to generalize the Robinson-Schensted-Knuth correspondence. In this sense, generalized Schur operators are generalizations of semi-standard Young tableaux. We define a generalization of Schur polynomials as expansion coefficients of generalized Schur operators. We show that the commutation relation of generalized Schur operators implies Pieri's formula for generalized Schur polynomials.
引用
收藏
页码:27 / 45
页数:18
相关论文
共 50 条
  • [21] Pieri's formula via explicit rational equivalence
    Sottile, F
    [J]. CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1997, 49 (06): : 1281 - 1298
  • [22] DISCRETE FOURIER TRANSFORM ASSOCIATED WITH GENERALIZED SCHUR POLYNOMIALS
    van Diejen, J. F.
    Emsiz, E.
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2018, 146 (08) : 3459 - 3472
  • [23] AN EXPLICIT FORMULA FOR THE GENERALIZED BERNOULLI POLYNOMIALS
    SRIVASTAVA, HM
    TODOROV, PG
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1988, 130 (02) : 509 - 513
  • [24] A GENERALIZED BINOMIAL FORMULA FOR JACK POLYNOMIALS
    LASSALLE, M
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1990, 310 (05): : 253 - 256
  • [25] Cubature Formula for Bivariate Generalized Chebyshev Koornwinder's Type Polynomials
    AlMheidat, Maalee
    AyyalSalman, Khaldoun
    AlQudah, Mohammad
    [J]. INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS (ICNAAM 2017), 2018, 1978
  • [26] Schur Superpolynomials: Combinatorial Definition and Pieri Rule
    Blondeau-Fournier, Olivier
    Mathieu, Pierre
    [J]. SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2015, 11
  • [27] The torsion free Pieri formula
    Britten, DJ
    Lemire, FW
    [J]. CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1998, 50 (02): : 266 - 289
  • [28] SPREADS ASSOCIATED WITH THE PIERI FORMULA
    BOFFI, G
    [J]. BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 1984, 3D (01): : 87 - 109
  • [29] On generalized Schur's partitions
    Cao, Zhu
    Chen, Shi-Chao
    [J]. INTERNATIONAL JOURNAL OF NUMBER THEORY, 2017, 13 (06) : 1381 - 1391
  • [30] The Schur algorithm for generalized Schur functions III:: J-unitary matrix polynomials on the circle
    Alpay, D
    Azizov, T
    Dijksma, A
    Langer, H
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2003, 369 : 113 - 144