Pieri’s formula for generalized Schur polynomials

被引:0
|
作者
Yasuhide Numata
机构
[1] Hokkaido University,Department of Mathematics
来源
关键词
Pieri formula; Generarized Schur operators; Schur polynomials; Young diagrams; Planar binary trees; Differential posets; Dual graphs; Symmetric functions; Quasi-symmetric polynomials;
D O I
暂无
中图分类号
学科分类号
摘要
Young's lattice, the lattice of all Young diagrams, has the Robinson-Schensted-Knuth correspondence, the correspondence between certain matrices and pairs of semi-standard Young tableaux with the same shape. Fomin introduced generalized Schur operators to generalize the Robinson-Schensted-Knuth correspondence. In this sense, generalized Schur operators are generalizations of semi-standard Young tableaux. We define a generalization of Schur polynomials as expansion coefficients of generalized Schur operators. We show that the commutation relation of generalized Schur operators implies Pieri's formula for generalized Schur polynomials.
引用
收藏
页码:27 / 45
页数:18
相关论文
共 50 条
  • [42] The Mehler Formula for the Generalized Clifford-Hermite Polynomials
    F.BRACKX
    N.DE SCHEPPER
    K.I.KOU
    F.SOMMEN
    [J]. Acta Mathematica Sinica,English Series, 2007, 23 (04) : 697 - 704
  • [43] A generalized formula for the integral of three associated Legendre polynomials
    Mavromatis, HA
    Alassar, RS
    [J]. APPLIED MATHEMATICS LETTERS, 1999, 12 (03) : 101 - 105
  • [44] Generalized orthogonal polynomials and the Christoffel-Darboux formula
    Geronimus, J
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES DE L URSS, 1940, 26 : 847 - 849
  • [45] DARBOUX-CHRISTOFFEL GENERALIZED FORMULA FOR ORTHOGONAL POLYNOMIALS
    LASCOUX, A
    HE, S
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1985, 300 (20): : 681 - 683
  • [46] The mehler formula for the generalized Clifford-Hermite polynomials
    Brackx, F.
    De Schepper, N.
    Kou, K. I.
    Sommen, F.
    [J]. ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2007, 23 (04) : 697 - 704
  • [47] The formula for the multiplicity of two generalized polynomials on time scales
    Liu, Hsuan-Ku
    [J]. APPLIED MATHEMATICS LETTERS, 2012, 25 (10) : 1420 - 1425
  • [48] An explicit formula for generalized potential polynomials and its applications
    Cenkci, Mehmet
    [J]. DISCRETE MATHEMATICS, 2009, 309 (06) : 1498 - 1510
  • [49] EXPLICIT GENERALIZED PIERI MAPS
    MALIAKAS, M
    OLVER, PJ
    [J]. JOURNAL OF ALGEBRA, 1992, 148 (01) : 68 - 85
  • [50] A Schur-Like Basis of NSym Defined by a Pieri Rule
    Campbell, John
    Feldman, Karen
    Light, Jennifer
    Shuldiner, Pavel
    Xu, Yan
    [J]. ELECTRONIC JOURNAL OF COMBINATORICS, 2014, 21 (03):