DISCRETE FOURIER TRANSFORM ASSOCIATED WITH GENERALIZED SCHUR POLYNOMIALS

被引:8
|
作者
van Diejen, J. F. [1 ]
Emsiz, E. [2 ]
机构
[1] Univ Talca, Inst Matemat & Fis, Casilla 747, Talca, Chile
[2] Pontificia Univ Catolica Chile, Fac Matemat, Casilla 306,Correo 22, Santiago, Chile
关键词
Discrete Fourier transform; discrete Laplacian; boundary perturbations; diagonalization; generalized Schur polynomials; ORTHOGONAL POLYNOMIALS; MODEL;
D O I
10.1090/proc/14036
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove the Plancherel formula for a four-parameter family of discrete Fourier transforms and their multivariate generalizations stemming from corresponding generalized Schur polynomials. For special choices of the parameters, this recovers the sixteen classic discrete sine-and cosine transforms DST-1, ... , DST-8 and DCT-1, ... , DCT-8, as well as recently studied (anti) symmetric multivariate generalizations thereof.
引用
收藏
页码:3459 / 3472
页数:14
相关论文
共 50 条