DISCRETE FOURIER TRANSFORM ASSOCIATED WITH GENERALIZED SCHUR POLYNOMIALS

被引:8
|
作者
van Diejen, J. F. [1 ]
Emsiz, E. [2 ]
机构
[1] Univ Talca, Inst Matemat & Fis, Casilla 747, Talca, Chile
[2] Pontificia Univ Catolica Chile, Fac Matemat, Casilla 306,Correo 22, Santiago, Chile
关键词
Discrete Fourier transform; discrete Laplacian; boundary perturbations; diagonalization; generalized Schur polynomials; ORTHOGONAL POLYNOMIALS; MODEL;
D O I
10.1090/proc/14036
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove the Plancherel formula for a four-parameter family of discrete Fourier transforms and their multivariate generalizations stemming from corresponding generalized Schur polynomials. For special choices of the parameters, this recovers the sixteen classic discrete sine-and cosine transforms DST-1, ... , DST-8 and DCT-1, ... , DCT-8, as well as recently studied (anti) symmetric multivariate generalizations thereof.
引用
收藏
页码:3459 / 3472
页数:14
相关论文
共 50 条
  • [21] THE MULTIPLICATIVE COMPLEXITY AND ALGORITHM OF THE GENERALIZED DISCRETE FOURIER TRANSFORM(GFT)
    Y.H. Zeng(7th Department
    JournalofComputationalMathematics, 1995, (04) : 351 - 356
  • [22] A discrete Fourier transform associated with the affine Hecke algebra
    van Diejen, J. F.
    Emsiz, E.
    ADVANCES IN APPLIED MATHEMATICS, 2012, 49 (01) : 24 - 38
  • [23] Restriction Theorem Fails for the Fourier-Hermite Transform Associated with the Normalized Hermite Polynomials with Respect to a Discrete Surface
    Ghosh, Sunit
    Swain, Jitendriya
    RESULTS IN MATHEMATICS, 2024, 79 (01)
  • [24] Generalized Discrete Fourier Transform Transform for FBMC Peak to Average Power Ratio Reduction
    Aboul-Dahab, Mohamed A.
    Fouad, Mohamed M.
    Roshdy, Radwa A.
    IEEE ACCESS, 2019, 7 : 81730 - 81740
  • [25] Generalized Random Demodulator Associated with Fractional Fourier Transform
    Haoran Zhao
    Liyan Qiao
    Jingchao Zhang
    Ning Fu
    Circuits, Systems, and Signal Processing, 2018, 37 : 5161 - 5173
  • [26] Generalized sampling expansions associated with quaternion Fourier transform
    Cheng, Dong
    Kou, Kit Ian
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2018, 41 (11) : 4021 - 4032
  • [27] Generalized Random Demodulator Associated with Fractional Fourier Transform
    Zhao, Haoran
    Qiao, Liyan
    Zhang, Jingchao
    Fu, Ning
    CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2018, 37 (11) : 5161 - 5173
  • [28] THE FOURIER-TRANSFORM AND THE DISCRETE FOURIER-TRANSFORM
    AUSLANDER, L
    GRUNBAUM, FA
    INVERSE PROBLEMS, 1989, 5 (02) : 149 - 164
  • [29] Generalized convolution theorem associated with fractional Fourier transform
    Shi, Jun
    Sha, Xuejun
    Song, Xiaocheng
    Zhang, Naitong
    WIRELESS COMMUNICATIONS & MOBILE COMPUTING, 2014, 14 (13): : 1340 - 1351
  • [30] Accuracy of the discrete Fourier transform and the fast Fourier transform
    Schatzman, JC
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1996, 17 (05): : 1150 - 1166