Analysis and numerical methods for the Riesz space distributed-order advection-diffusion equation with time delay

被引:1
|
作者
Javidi M. [1 ]
Heris M.S. [1 ]
机构
[1] Faculty of Mathematical Sciences, University of Tabriz, Tabriz
关键词
Delay; Distributed-order equation; Fractional backward differential formulas; Riesz fractional derivatives; Stable and convergent;
D O I
10.1007/s40324-019-00192-z
中图分类号
学科分类号
摘要
In this paper, we investigate the fractional backward differential formulas (FBDF) and Grünwald difference method for the Riesz space distributed-order advection-diffusion equation with delay. The midpoint quadrature rule is used to approximate the distributed-order equation by a multi-term fractional form. Next the transformed multi-term fractional equation is solved by discretizing in space by the fractional backward differential formulas method for 0 < α< 1 and the shifted Grünwald difference operators for 1 < β< 2 to approximate the Riesz space fractional derivative and in time by using the Crank-Nicolson scheme. We prove that the Crank-Nicolson scheme is conditionally stable and convergent with second-order accuracy O (h2+ κ2+ σ2+ ρ2). Finally, we give some examples and compare the results of our method with two works. This results show the effectiveness of the proposed numerical method. © 2019, Sociedad Española de Matemática Aplicada.
引用
下载
收藏
页码:533 / 551
页数:18
相关论文
共 50 条
  • [21] Numerical efficiency of some exponential methods for an advection-diffusion equation
    Eduardo Macias-Diaz, Jorge
    Inan, Bilge
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2019, 96 (05) : 1005 - 1029
  • [22] An implicit numerical method for the solution of the fractional advection-diffusion equation with delay
    Pimenov, V. G.
    Hendy, A. S.
    TRUDY INSTITUTA MATEMATIKI I MEKHANIKI URO RAN, 2016, 22 (02): : 218 - 226
  • [23] Stability and convergence of the difference methods for the space-time fractional advection-diffusion equation
    Liu, F.
    Zhuang, P.
    Anh, V.
    Turner, I.
    Burrage, K.
    APPLIED MATHEMATICS AND COMPUTATION, 2007, 191 (01) : 12 - 20
  • [24] NUMERICAL METHODS FOR THE VARIABLE-ORDER FRACTIONAL ADVECTION-DIFFUSION EQUATION WITH A NONLINEAR SOURCE TERM
    Zhuang, P.
    Liu, F.
    Anh, V.
    Turner, I.
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2009, 47 (03) : 1760 - 1781
  • [25] Numerical Methods for a Class of Fractional Advection-Diffusion Models with Functional Delay
    Pimenov, Vladimir
    Hendy, Ahmed
    NUMERICAL ANALYSIS AND ITS APPLICATIONS (NAA 2016), 2017, 10187 : 533 - 541
  • [26] Local discontinuous Galerkin method for the Riesz space distributed-order Sobolev equation
    Fouladi, Somayeh
    Mohammadi-Firouzjaei, Hadi
    ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2023, 155 : 38 - 47
  • [28] A circulant preconditioner for the Riesz distributed-order space-fractional diffusion equations
    Huang, Xin
    Fang, Zhi-Wei
    Sun, Hai-Wei
    Zhang, Chun-Hua
    LINEAR & MULTILINEAR ALGEBRA, 2022, 70 (16): : 3081 - 3096
  • [29] Spectral solutions for diffusion equations of Riesz distributed-order space-fractional
    Abdelkawy, Mohamed A.
    Al-Shomrani, Mohamed M.
    ALEXANDRIA ENGINEERING JOURNAL, 2022, 61 (02) : 1045 - 1054
  • [30] An efficient approximate solution of Riesz fractional advection-diffusion equation
    Mockary, Siavash
    Vahidi, Alireza
    Babolian, Esmail
    COMPUTATIONAL METHODS FOR DIFFERENTIAL EQUATIONS, 2022, 10 (02): : 307 - 319