Analysis and numerical methods for the Riesz space distributed-order advection-diffusion equation with time delay

被引:1
|
作者
Javidi M. [1 ]
Heris M.S. [1 ]
机构
[1] Faculty of Mathematical Sciences, University of Tabriz, Tabriz
关键词
Delay; Distributed-order equation; Fractional backward differential formulas; Riesz fractional derivatives; Stable and convergent;
D O I
10.1007/s40324-019-00192-z
中图分类号
学科分类号
摘要
In this paper, we investigate the fractional backward differential formulas (FBDF) and Grünwald difference method for the Riesz space distributed-order advection-diffusion equation with delay. The midpoint quadrature rule is used to approximate the distributed-order equation by a multi-term fractional form. Next the transformed multi-term fractional equation is solved by discretizing in space by the fractional backward differential formulas method for 0 < α< 1 and the shifted Grünwald difference operators for 1 < β< 2 to approximate the Riesz space fractional derivative and in time by using the Crank-Nicolson scheme. We prove that the Crank-Nicolson scheme is conditionally stable and convergent with second-order accuracy O (h2+ κ2+ σ2+ ρ2). Finally, we give some examples and compare the results of our method with two works. This results show the effectiveness of the proposed numerical method. © 2019, Sociedad Española de Matemática Aplicada.
引用
下载
收藏
页码:533 / 551
页数:18
相关论文
共 50 条
  • [41] An Implicit Numerical Method for the Riemann-Liouville Distributed-Order Space Fractional Diffusion Equation
    Zhang, Mengchen
    Shen, Ming
    Chen, Hui
    FRACTAL AND FRACTIONAL, 2023, 7 (05)
  • [42] GENERALIZED SCHUR METHODS FOR THE ADVECTION-DIFFUSION EQUATION
    NATAF, F
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1992, 314 (05): : 419 - 422
  • [43] An implicit numerical method of a new time distributed-order and two-sided space-fractional advection-dispersion equation
    Xiuling Hu
    F. Liu
    I. Turner
    V. Anh
    Numerical Algorithms, 2016, 72 : 393 - 407
  • [44] Analysis of a hidden memory variably distributed-order space-fractional diffusion equation
    Jia, Jinhong
    Wang, Hong
    APPLIED MATHEMATICS LETTERS, 2022, 124
  • [45] An implicit numerical method of a new time distributed-order and two-sided space-fractional advection-dispersion equation
    Hu, Xiuling
    Liu, F.
    Turner, I.
    Anh, V.
    NUMERICAL ALGORITHMS, 2016, 72 (02) : 393 - 407
  • [46] Numerical solutions of space-fractional advection-diffusion equation with a source term
    Jannelli, Alessandra
    Ruggieri, Marianna
    Speciale, Maria Paola
    INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS (ICNAAM-2018), 2019, 2116
  • [47] Analyses of numerical methods for the advection-diffusion problem
    Sangalli, G
    BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 2003, 6A (02): : 319 - 321
  • [48] High-accuracy numerical scheme for solving the space-time fractional advection-diffusion equation with convergence analysis
    Aghdam, Y. Esmaeelzade
    Mesgarani, H.
    Moremedi, G. M.
    Khoshkhahtinat, M.
    ALEXANDRIA ENGINEERING JOURNAL, 2022, 61 (01) : 217 - 225
  • [49] An efficient numerical method for the distributed-order time-fractional diffusion equation with the error analysis and stability properties
    Irandoust-Pakchin, Safar
    Hossein Derakhshan, Mohammad
    Rezapour, Shahram
    Adel, Mohamed
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2024,
  • [50] Meshfree methods for the nonlinear variable-order fractional advection-diffusion equation
    Ju, Yuejuan
    Liu, Zhiyong
    Yang, Jiye
    Xu, Qiuyan
    ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2023, 156 : 126 - 143