A circulant preconditioner for the Riesz distributed-order space-fractional diffusion equations

被引:11
|
作者
Huang, Xin [1 ]
Fang, Zhi-Wei [1 ]
Sun, Hai-Wei [1 ]
Zhang, Chun-Hua [1 ]
机构
[1] Univ Macau, Dept Math, Macau, Peoples R China
来源
LINEAR & MULTILINEAR ALGEBRA | 2022年 / 70卷 / 16期
关键词
Distributed-order; space-fractional diffusion equations; circulant preconditioner; preconditioned conjugated gradient method; SPECTRAL-ANALYSIS;
D O I
10.1080/03081087.2020.1823309
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study a fast algorithm for the numerical solution of the 1D distributed-order space-fractional diffusion equation. After discretization by the finite difference method, the resulting system is the symmetric positive definite Toeplitz matrix. The preconditioned conjugate gradient method with a circulant preconditioner is employed to solve the linear system. Theoretically, the spectrum of the preconditioned matrix is proved to be clustered around 1, which can guarantee the superlinear convergence rate of the proposed method. Numerical experiments are carried out to demonstrate the effectiveness of our proposed method.
引用
收藏
页码:3081 / 3096
页数:16
相关论文
共 50 条
  • [1] A class of preconditioner for solving the Riesz distributed-order nonlinear space-fractional diffusion equations
    Yu, Jian-Wei
    Zhang, Chun-Hua
    Huang, Xin
    Wang, Xiang
    [J]. JAPAN JOURNAL OF INDUSTRIAL AND APPLIED MATHEMATICS, 2023, 40 (01) : 537 - 562
  • [2] A class of preconditioner for solving the Riesz distributed-order nonlinear space-fractional diffusion equations
    Jian-Wei Yu
    Chun-Hua Zhang
    Xin Huang
    Xiang Wang
    [J]. Japan Journal of Industrial and Applied Mathematics, 2023, 40 : 537 - 562
  • [3] Spectral solutions for diffusion equations of Riesz distributed-order space-fractional
    Abdelkawy, Mohamed A.
    Al-Shomrani, Mohamed M.
    [J]. ALEXANDRIA ENGINEERING JOURNAL, 2022, 61 (02) : 1045 - 1054
  • [4] Symbol-based preconditioning for riesz distributed-order space-fractional diffusion equations
    Mazza, Mariarosa
    Serra-Capizzano, Stefano
    Usman, Muhammad
    [J]. Electronic Transactions on Numerical Analysis, 2021, 54 : 499 - 513
  • [5] SYMBOL-BASED PRECONDITIONING FOR RIESZ DISTRIBUTED-ORDER SPACE-FRACTIONAL DIFFUSION EQUATIONS
    Mazza, Mariarosa
    Serra-Capizzano, Stefano
    Usman, Muhammad
    [J]. ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS, 2021, 54 : 499 - 513
  • [6] Algebra preconditionings for 2D Riesz distributed-order space-fractional diffusion equations on convex domains
    Mazza, Mariarosa
    Serra-Capizzano, Stefano
    Sormani, Rosita Luisa
    [J]. NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2024, 31 (03)
  • [7] An Efficient Finite Volume Method for Nonlinear Distributed-Order Space-Fractional Diffusion Equations in Three Space Dimensions
    Xiangcheng Zheng
    Huan Liu
    Hong Wang
    Hongfei Fu
    [J]. Journal of Scientific Computing, 2019, 80 : 1395 - 1418
  • [8] An Efficient Finite Volume Method for Nonlinear Distributed-Order Space-Fractional Diffusion Equations in Three Space Dimensions
    Zheng, Xiangcheng
    Liu, Huan
    Wang, Hong
    Fu, Hongfei
    [J]. JOURNAL OF SCIENTIFIC COMPUTING, 2019, 80 (03) : 1395 - 1418
  • [9] On τ-preconditioner for anovel fourth-order difference scheme oftwo-dimensional Riesz space-fractional diffusion equations
    Huang, Yuan-Yuan
    Qu, Wei
    Lei, Siu-Long
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2023, 145 : 124 - 140
  • [10] Analysis of a hidden memory variably distributed-order space-fractional diffusion equation
    Jia, Jinhong
    Wang, Hong
    [J]. APPLIED MATHEMATICS LETTERS, 2022, 124