Symbol-based preconditioning for riesz distributed-order space-fractional diffusion equations

被引:0
|
作者
Mazza M. [1 ]
Serra-Capizzano S. [1 ]
Usman M. [2 ]
机构
[1] Department of Humanities and Innovation, University of Insubria, Via Valleggio 11, Como
[2] Department of Science and High Technology, University of Insubria, Via Valleggio 11, Como
关键词
Fractional diffusion equations; Preconditioning; Spectral distribution; Toeplitz matrices;
D O I
10.1553/ETNA_VOL54S499
中图分类号
学科分类号
摘要
In this work, we examine the numerical solution of a 1D distributed-order space-fractional diffusion equation. Discretizing the given problem by means of an implicit finite difference scheme based on the shifted Grünwald-Letnikov formula, the resulting linear systems show a Toeplitz structure. Then, by using well-known spectral tools for Toeplitz sequences, we determine the corresponding symbol describing its asymptotic eigenvalue distribution as the matrix size diverges. The spectral analysis is performed under different assumptions with the aim of estimating the intrinsic asymptotic ill-conditioning of the involved matrices. The obtained results suggest to precondition the involved linear systems with either a Laplacian-like preconditioner or with more general τpreconditioners. Due to the symmetric positive definite nature of the coefficient matrices, we opt for the preconditioned conjugate gradient method, and we compare the performances of our proposal with a Strang circulant alternative given in the literature. © 2021, Kent State University.
引用
收藏
页码:499 / 513
页数:14
相关论文
共 50 条
  • [1] SYMBOL-BASED PRECONDITIONING FOR RIESZ DISTRIBUTED-ORDER SPACE-FRACTIONAL DIFFUSION EQUATIONS
    Mazza, Mariarosa
    Serra-Capizzano, Stefano
    Usman, Muhammad
    ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS, 2021, 54 : 499 - 513
  • [2] Spectral solutions for diffusion equations of Riesz distributed-order space-fractional
    Abdelkawy, Mohamed A.
    Al-Shomrani, Mohamed M.
    ALEXANDRIA ENGINEERING JOURNAL, 2022, 61 (02) : 1045 - 1054
  • [3] A circulant preconditioner for the Riesz distributed-order space-fractional diffusion equations
    Huang, Xin
    Fang, Zhi-Wei
    Sun, Hai-Wei
    Zhang, Chun-Hua
    LINEAR & MULTILINEAR ALGEBRA, 2022, 70 (16): : 3081 - 3096
  • [4] A class of preconditioner for solving the Riesz distributed-order nonlinear space-fractional diffusion equations
    Jian-Wei Yu
    Chun-Hua Zhang
    Xin Huang
    Xiang Wang
    Japan Journal of Industrial and Applied Mathematics, 2023, 40 : 537 - 562
  • [5] A class of preconditioner for solving the Riesz distributed-order nonlinear space-fractional diffusion equations
    Yu, Jian-Wei
    Zhang, Chun-Hua
    Huang, Xin
    Wang, Xiang
    JAPAN JOURNAL OF INDUSTRIAL AND APPLIED MATHEMATICS, 2023, 40 (01) : 537 - 562
  • [6] Algebra preconditionings for 2D Riesz distributed-order space-fractional diffusion equations on convex domains
    Mazza, Mariarosa
    Serra-Capizzano, Stefano
    Sormani, Rosita Luisa
    NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2024, 31 (03)
  • [7] An Efficient Finite Volume Method for Nonlinear Distributed-Order Space-Fractional Diffusion Equations in Three Space Dimensions
    Xiangcheng Zheng
    Huan Liu
    Hong Wang
    Hongfei Fu
    Journal of Scientific Computing, 2019, 80 : 1395 - 1418
  • [8] An Efficient Finite Volume Method for Nonlinear Distributed-Order Space-Fractional Diffusion Equations in Three Space Dimensions
    Zheng, Xiangcheng
    Liu, Huan
    Wang, Hong
    Fu, Hongfei
    JOURNAL OF SCIENTIFIC COMPUTING, 2019, 80 (03) : 1395 - 1418
  • [9] Analysis of a hidden memory variably distributed-order space-fractional diffusion equation
    Jia, Jinhong
    Wang, Hong
    APPLIED MATHEMATICS LETTERS, 2022, 124
  • [10] Banded preconditioning with shift compensation for solving discrete Riesz space-fractional diffusion equations
    Li, Shu-Jiao
    Lu, Kang-Ya
    Miao, Cun-Qiang
    NUMERICAL ALGORITHMS, 2024, 98 (2) : 839 - 876